650 research outputs found

    A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification

    Get PDF
    A fully-implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully-implicit time discretisation scheme with variable steps size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully-explicit methods, with respect to CPU time and accuracy, is shown. Due to the high non-linearity of the governing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence behaviour

    Advanced numerical methods for the simulation of alloy solidification with high Lewis number

    Get PDF
    A fully-implicit numerical method based upon adaptively refined meshes for the thermal-solutal simulation of alloy solidification in 2D is presented. In addition we combine an unconditional stable second-order fully-implicit time discretisation scheme with variable step size control to obtain an adaptive time and space discretisation method, where a robust and fast multigrid solver for systems of non-linear algebraic equations is used to solve the intermediate approximations per time step. For the isothermal case, the superiority of this method, compared to widely used fully-explicit methods, with respect to CPU time and accuracy, has been demonstrated and published previously. Here, the new proposed method has been applied to the thermalsolutal case with high Lewis number, where stability issues and time step restrictions have been major constraints in previous research

    Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach

    Get PDF
    Alloy dendrite growth during solidification with coupled thermal-solute-convection fields has been studied by phase field modeling and simulation. The coupled transport equations were solved using a novel parallel-multigrid numerical approach with high computational efficiency that has enabled the investigation of dendrite growth with realistic alloy values of Lewis number ∼104 and Prandtl number ∼10−2. The detailed dendrite tip shape and character were compared with widely recognized analytical approaches to show validity, and shown to be highly dependent on undercooling, solute concentration and Lewis number. In a relatively low flow velocity regime, variations in the ratio of growth selection parameter with and without convection agreed well with theory

    Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes

    Get PDF
    This paper presents an interface tracking method for modelling the flow of immiscible metallic liquids in mixing processes. The methodology can provide an insight into mixing processes for studying the fundamental morphology development mechanisms for immiscible interfaces. The volume-of-fluid (VOF) method is adopted in the present study, following a review of various modelling approaches for immiscible fluid systems. The VOF method employed here utilises the piecewise linear for interface construction scheme as well as the continuum surface force algorithm for surface force modelling. A model coupling numerical and experimental data is established. The main flow features in the mixing process are investigated. It is observed that the mixing of immiscible metallic liquids is strongly influenced by the viscosity of the system, shear forces and turbulence. The numerical results show good qualitative agreement with experimental results, and are useful for optimisating the design of mixing casting processes
    • …
    corecore