1,293 research outputs found

    Collocation Games and Their Application to Distributed Resource Management

    Full text link
    We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.NSF (CCF-0820138, CSR-0720604, EFRI-0735974, CNS-0524477, CNS-052016, CCR-0635102); Universidad Pontificia Bolivariana; COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología "Francisco José de Caldas

    AdaptAnon: adaptive anonymity for service queries in mobile opportunistic networks

    Get PDF

    Adaptive real-time predictive collaborative content discovery and retrieval in mobile disconnection prone networks

    Get PDF
    Emerging mobile environments motivate the need for the development of new distributed technologies which are able to support dynamic peer to peer content sharing, decrease high operating costs, and handle intermittent disconnections. In this paper, we investigate complex challenges related to the mobile disconnection tolerant discovery of content that may be stored in mobile devices and its delivery to the requesting nodes in mobile resource-constrained heterogeneous environments. We propose a new adaptive real-time predictive multi-layer caching and forwarding approach, CafRepCache, which is collaborative, resource, latency, and content aware. CafRepCache comprises multiple multi-layer complementary real-time distributed predictive heuristics which allow it to respond and adapt to time-varying network topology, dynamically changing resources, and workloads while managing complex dynamic tradeoffs between them in real time. We extensively evaluate our work against three competitive protocols across a range of metrics over three heterogeneous real-world mobility traces in the face of vastly different workloads and content popularity patterns. We show that CafRepCache consistently maintains higher cache availability, efficiency and success ratios while keeping lower delays, packet loss rates, and caching footprint compared to the three competing protocols across three traces when dynamically varying content popularity and dynamic mobility of content publishers and subscribers. We also show that the computational cost and network overheads of CafRepCache are only marginally increased compared with the other competing protocols

    Graph embeddings for low-stretch greedy routing

    Full text link
    The simplest greedy geometric routing forwards packets to make most progress in terms of geometric distance within reach. Its notable advantages are low complexity, and the use of local information only. However, two problems of greedy routing are that delivery is not always guaranteed, and that the greedy routes may take more hops than the corresponding shortest paths. Additionally, in dynamic multihop networks, routing elements can join or leave during network operation or exhibit intermittent failures. Even a single link or node removal may invalidate the greedy routing success guarantees. Greedy embedding is a graph embedding that makes the simple greedy packet forwarding successful for every source-destination pair. In this dissertation, we consider the problems of designing greedy graph embeddings that also yield low hop stretch of the greedy paths over the shortest paths and can accommodate network dynamics. In the first part of the dissertation, we consider embedding and routing for arbitrary unweighted network graphs, based on greedy routing and utilizing virtual node coordinates. We propose an algorithm for online greedy graph embedding in the hyperbolic plane that enables incremental embedding of network nodes as they join the network, without disturbing the global embedding. As an alternative to frequent reembedding of temporally dynamic network graphs in order to retain the greedy embedding property, we propose a simple but robust generalization of greedy geometric routing called Gravity--Pressure (GP) routing. Our routing method always succeeds in finding a route to the destination provided that a path exists, even if a significant fraction of links or nodes is removed subsequent to the embedding. GP routing does not require precomputation or maintenance of special spanning subgraphs and is particularly suitable for operation in tandem with our proposed algorithm for online graph embedding. In the second part of the dissertation we study how topological and geometric properties of embedded graphs influence the hop stretch. Based on the obtained insights, we synthesize embedding heuristics that yield minimal hop stretch greedy embeddings. Finally, we verify their effectiveness on models of synthetic graphs as well as instances of several classes of real-world network graphs

    L'intertextualité dans les publications scientifiques

    No full text
    La base de données bibliographiques de l'IEEE contient un certain nombre de duplications avérées avec indication des originaux copiés. Ce corpus est utilisé pour tester une méthode d'attribution d'auteur. La combinaison de la distance intertextuelle avec la fenêtre glissante et diverses techniques de classification permet d'identifier ces duplications avec un risque d'erreur très faible. Cette expérience montre également que plusieurs facteurs brouillent l'identité de l'auteur scientifique, notamment des collectifs de chercheurs à géométrie variable et une forte dose d'intertextualité acceptée voire recherchée
    • …
    corecore