217 research outputs found

    A multichannel relay MAC protocol for IEEE 802.11 wireless LANs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109605/1/dac2526.pd

    An Adaptive Common Control Channel MAC with Transmission Opportunity in IEEE 802.11ac

    Get PDF
    Spectral utilization is a major challenge in wireless ad hoc networks due in part to using limited network resources. For ad hoc networks, the bandwidth is shared among stations that can transmit data at any point in time. It  is important to maximize the throughput to enhance the network service. In this paper, we propose an adaptive multi-channel access with transmission opportunity protocol for multi-channel ad hoc networks, called AMCA-TXOP. For the purpose of coordination, the proposed protocol uses an adaptive common control channel over which the stations negotiate their channel selection based on the entire available bandwidth and then switch to the negotiated channel. AMCA-TXOP requires a single radio interface so that each station can listen to the control channel, which can overhear all agreements made by the other stations. This allows parallel transmission to multiple stations over various channels, prioritizing data traffic to achieve the quality-of-service requirements. The proposed approach can work with the 802.11ac protocol, which has expanded the bandwidth to 160 MHz by channel bonding. Simulations were conducted to demonstrate the throughput gains that can be achieved using the AMCA-TXOP protocol. Moreover, we compared our protocol with  the IEEE 802.11ac standard protocols

    A Novel Multicasting Scheme over Wireless LAN Systems by Using Relay

    Get PDF
    Abstract. We propose a novel multicast scheme that can provide qualityof-service (QoS) to multicast service over IEEE 802.11 wireless LANs by utilizing medium access control (MAC) layer relay. It is well known that IEEE 802.11 provides a physical layer multi-rate capability in response to different channel conditions, and hence packets may be delivered at a higher data rate through a relay node than through the direct link if the direct link has low quality and low data rate. We develop the distributed relay node selection algorithm and the relay channel selection algorithm. The effectiveness of proposed scheme is examined by numerical method and simulation. Simulations show that the proposed relayed multicast significantly improves throughput and delay performance

    Efficiency and benefits of wireless network segregation

    Get PDF

    A New Exposed-terminal-free MAC Protocol for Multi-hop Wireless Networks

    Get PDF
    AbstractThis article presents a new multichannel medium access control (MAC) protocol to solve the exposed-terminal (ET) problem for efficient channel sharing in multi-hop wireless networks. It uses request-to-send and clear-to-send (RTS/CTS) dialogue on a common channel and flexibly opts for conflict-free traffic channels to carry out the data packet transmission on the basis of a new channel selection scheme. The acknowledgment (ACK) packet for the data packet transmission is sent back to the sender over another common channel thus completely eliminating the exposed-terminal effects. Any adjacent communication pair can take full advantage of multiple traffic channels without collision and the spatial reuse of the same channel is extended to other communication pairs which are even within 2 hops from them. In addition, the hidden-terminal effect is also considerably reduced because most of possible packet collisions on a single channel are avoided due to traffic load balance on multichannels. Finally, a performance comparison is made between the proposed protocol and other typical MAC protocols. Simulation results evidence its obvious superiority to the MAC protocols associated with other channel selection schemes and traditional ACK transmission scheme as well as cooperative asynchronous multichannel MAC (CAM-MAC) protocol in terms of four performance indices: total channel utilization, average channel utilization, average packet delay, and packet dropping rate

    An evaluation of segregate network compared to GRID technology

    Get PDF
    corecore