46 research outputs found

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices

    Information Switching Processor (ISP) contention analysis and control

    Get PDF
    Future satellite communications, as a viable means of communications and an alternative to terrestrial networks, demand flexibility and low end-user cost. On-board switching/processing satellites potentially provide these features, allowing flexible interconnection among multiple spot beams, direct to the user communications services using very small aperture terminals (VSAT's), independent uplink and downlink access/transmission system designs optimized to user's traffic requirements, efficient TDM downlink transmission, and better link performance. A flexible switching system on the satellite in conjunction with low-cost user terminals will likely benefit future satellite network users

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    Node design in optical packet switched networks

    Get PDF

    Future benefits and applications of intelligent on-board processing to VSAT services

    Get PDF
    The trends and roles of VSAT services in the year 2010 time frame are examined based on an overall network and service model for that period. An estimate of the VSAT traffic is then made and the service and general network requirements are identified. In order to accommodate these traffic needs, four satellite VSAT architectures based on the use of fixed or scanning multibeam antennas in conjunction with IF switching or onboard regeneration and baseband processing are suggested. The performance of each of these architectures is assessed and the key enabling technologies are identified

    Performance of a ATM Lan switching fabric

    Get PDF
    This thesis provides a focus on the architecture of a high-speed packet switching fabric and its performance. The switching fabric is suited for existing transparent protocols, based on Asynchronous Transfer Mode (ATM) technology and standards in an environment of Local Area Network (LAN). A high-speed switching fabric architecture which adopts Time Division mode and bases on a shared medium approach is proposed. This is an architecture for nonblocking performance, no congestion and high reliability. Its principle for performance is a method of sequentially scheduling the inputs and the transferring of bits in parallel. To study the performance of the switching fabric architecture one uses OPNET communication simulation software. Some parameters including the throughputs, the transfer (the switching fabric) delay, the switching overflow and the packet size in the buffer (the input buffer and the output buffer) are implemented through the simulation. And finally, an analysis for the results of the simulation for local ATM IDS fabric architecture is discussed. The results display an architecture that provides a rational design with some expected characteristics

    Performance and policy dimensions in internet routing

    Get PDF
    The Internet Routing Project, referred to in this report as the 'Highball Project', has been investigating architectures suitable for networks spanning large geographic areas and capable of very high data rates. The Highball network architecture is based on a high speed crossbar switch and an adaptive, distributed, TDMA scheduling algorithm. The scheduling algorithm controls the instantaneous configuration and swell time of the switch, one of which is attached to each node. In order to send a single burst or a multi-burst packet, a reservation request is sent to all nodes. The scheduling algorithm then configures the switches immediately prior to the arrival of each burst, so it can be relayed immediately without requiring local storage. Reservations and housekeeping information are sent using a special broadcast-spanning-tree schedule. Progress to date in the Highball Project includes the design and testing of a suite of scheduling algorithms, construction of software reservation/scheduling simulators, and construction of a strawman hardware and software implementation. A prototype switch controller and timestamp generator have been completed and are in test. Detailed documentation on the algorithms, protocols and experiments conducted are given in various reports and papers published. Abstracts of this literature are included in the bibliography at the end of this report, which serves as an extended executive summary

    Simulation of packet and cell-based communication networks

    Get PDF
    This thesis investigates, using simulation techniques, the practical aspects of implementing a novel mobility protocol on the emerging Broadband Integrated Services Digital Network standard. The increasing expansion of telecommunications networks has meant that the demand for simulation has increased rapidly in recent years; but conventional simulators are slow and developments in the communications field are outstripping the ability of sequential uni-processor simulators. Newer techniques using distributed simulation on a multi-processor network are investigated in an attempt to make a cell-level simulation of a non-trivial B.-I.S.D.N. network feasible. The current state of development of the Asynchronous Transfer Mode standard, which will be used to implement a B.-I.S.D.N., is reviewed and simulation studies of the Orwell Slotted Ring protocol were made in an attempt to devise a simpler model for use in the main simulator. The mobility protocol, which uses a footprinting technique to simplify hand- offs by distributing information about a connexion to surrounding base stations, was implemented on the simulator and found to be functional after a few 'special case' scenarios had been catered for

    On packet switch design

    Get PDF

    Contention resolution in optical packet-switched cross-connects

    Get PDF
    corecore