189 research outputs found

    Digital Radio Encoding and Power Amplifier Design for Multimode and Multiband Wireless Communications

    Get PDF
    The evolution of wireless technology has necessitated the support of multiple communication standards by mobile devices. At present, multiple chipsets/radios operating at predefined sets of modulation schemes, frequency bands, bandwidths and output power levels are used to achieve this objective. This leads to higher component counts, increased cost and limits the capacity to cope with future communication standards. In order to tackle different wireless standards using a single chipset, digital circuits have been increasingly deployed in radios and demonstrated re-configurability in different modulation schemes (multimode) and frequency bands (multiband). Despite efforts and progress made in digitizing the entire radio, the power amplifier (PA) is still designed using an conventional approach and has become the bottleneck in digital transmitters, in terms of low average power efficiency, poor compatibility with modern CMOS technology and limited re-configurability. This research addresses these issues from two aspects. The first half of the thesis investigates signal encoding issues between the modulator and PA. We propose, analyze and evaluate a new hybrid amplitude/time signal encoding scheme that significantly improves the coding efficiency and dynamic range of a digitally modulated power amplifier (DMPA) without significantly increasing design complexity. The proposed hybrid amplitude/time encoding scheme combines both the amplitude domain and the time domain to optimally encode information. Experimental results show that hybrid amplitude/time encoding results in a 35% increase in the average coding efficiency with respect to conventional time encoding, and is only 6.7% lower than peak efficiency when applied to a Wireless Local Area Network (WLAN) signal with a peak to average power ratio equal to 9.9 dB. A new DMPA architecture, based on the proposed hybrid encoding, is also proposed. The second half of this thesis presents the design, analysis and implementation of a CMOS PA that is amenable to the proposed hybrid encoding scheme. A multi-way current mode class-D PA architecture has been proposed and realized in 130 nm CMOS technology. The designed PA has satisfied the objectives of wide bandwidth (1.5 GHz - 2.7 GHz at 1 dB output power), and high efficiency (PAE 63%) in addition to demonstrating linear responses using the proposed digital encoding. A complete digital transmitter combining the encoder and the multi-way PA was also investigated. The overall efficiency is 27% modulating 7.3 dB peak to average power ratio QAM signals

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    Personal area technologies for internetworked services

    Get PDF

    High-Capacity Short-Range Optical Communication Links

    Get PDF

    High Performance LNAs and Mixers for Direct Conversion Receivers in BiCMOS and CMOS Technologies

    Get PDF
    The trend in cellular chipset design today is to incorporate support for a larger number of frequency bands for each new chipset generation. If the chipset also supports receiver diversity two low noise amplifiers (LNAs) are required for each frequency band. This is however associated with an increase of off-chip components, i.e. matching components for the LNA inputs, as well as complex routing of the RF input signals. If balanced LNAs are implemented the routing complexity is further increased. The first presented work in this thesis is a novel multiband low noise single ended LNA and mixer architecture. The mixer has a novel feedback loop suppressing both second order distortion as well as DC-offset. The performance, verified by Monte Carlo simulations, is sufficient for a WCDMA application. The second presented work is a single ended multiband LNA with programmable integrated matching. The LNA is connected to an on-chip tunable balun generating differential RF signals for a differential mixer. The combination of the narrow band input matching and narrow band balun of the presented LNA is beneficial for suppressing third harmonic downconversion of a WLAN interferer. The single ended architecture has great advantages regarding PCB routing of the RF input signals but is on the other hand more sensitive to common mode interferers, e.g. ground, supply and substrate noise. An analysis of direct conversion receiver requirements is presented together with an overview of different LNA and mixer architectures in both BiCMOS and CMOS technology

    펄스에 의한 동적 부하 변조 기술을 이용한 고효율 선형 송신기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 서광석.STRONG push for longer battery life time and growing thermal concerns for the modern 3G/4G mobile terminals lead to an ever-growing need for higher efficiencies from the handset power amplifiers (PAs). Furthermore, as the modulation signal bandwidth is increased and more complex modulation schemes are introduced for higher data rate, the peak-to-average power ratio (PAPR) of signals increases and the PA requires more power back-off to meet the stringent linearity requirement. Therefore, the PA design has to address the challenging task of enhancing the efficiencies in the back-off power levels. In this dissertation, dynamic load modulation (DLM) technique is investigated to boost the efficiency of a PA in the back-off output power level. This technique increases the efficiency by adjusting the PA load impedance according to the magnitude of the envelope signal. It can be categorized into two types, continuous and discrete types. Continuous-type DLM PA changes load impedance continuously by changing the capacitance of varactors used in the load matching circuit. Although the continuous modulation of the load impedance may result in significant efficiency enhancement, difficulties on integration of varactors and complexities on linearization of the PA make it difficult to be applied to the handset PA applications. Discrete-type DLM PA switches the load impedance from one value to another using RF switches. This type has the advantage in the aspect of ease of integration and simplicity in linearization compared to the continuous-type DLM PA, which make it more suited to the handset PA applications. However, the overall efficiency enhancement is quite limited since the PA does not always operate under the optimal load conditions. To overcome the limitation of the existing DLM techniques, a new method of DLM, called pulsed dynamic load modulation (PDLM), is proposed to operate the PA near the optimum impedance across a continuous back-off power range while still benefiting from the advantages offered by the discrete-type DLM PA. PDLM PA combines the concept of Class-S PA with 1-bit discrete load switching. Analytical calculation using simplified equivalent model is well matched with simulation results. To prove the proposed concept, it is implemented by designing and fabricating a prototype PDLM PA at 837 MHz using a 0.32-μm silicon-on-insulator (SOI) CMOS process. The experimental results show the overall PAE improvement for high-PAPR signals such as LTE signals. Several issues caused by the PDLM technique are also discussed such as imperfect pulse tone termination effect and output noise spectrum due to pulse tones. Improving methods are proposed through the further analysis and evaluation. The proposed PA is compared to the envelope tracking (ET) PA which is commonly used to boost efficiency at the back-off output power. Since the proposed concept is realized with low-power control circuits unlike envelope tracking, which requires high-power circuits such as dc-dc converters and linear amplifiers, the PDLM PA concept of this work can provide a potential solution for high-efficiency PAs for the future mobile terminals using wideband modulation signals.Chapter 1. Introduction 1 Chapter 2. Dynamic Load Modulation Technique 8 2.1 Introduction 8 2.2 Continuous-type dynamic load modulation PA 9 2.3 Discrete-type dynamic load modulation PA 14 2.4 Implementation example 15 2.4.1 DLM PA Structure 16 2.4.2 Linearization 23 2.4.3 Experimental Results 25 2.4.4 Conclusion 31 2.5 Limitations 32 2.6 References 33 Chapter 3. A Pulsed Dynamic Load Modulation Technique for High-Efficiency Linear Transmitters 36 3.1 Introduction 36 3.2 Operation Principle of the PDLM PA 38 3.2.1 Concept of the PDLM PA 38 3.2.2 Theoretical Analysis of the PDLM PA 41 3.3 Circuit Design 47 3.3.1 2 stage CMOS PA design 49 3.3.2 High power RF switch design 59 3.3.3 PWM signal generator and switch driver 61 3.4 Experimental Results 63 3.5 Conclusion 76 3.6 References 77 Chapter 4. Discussions 83 4.1 Operation bandwidth of the PDLM PA 83 4.2 Spectral noise reduction method 87 4.3 References 91 Chapter 5. Conclusions 94 5.1 Research Summary 94 5.2 Future Works 95 Abstract in Korean 97 Publications 99Docto

    Split-enabled 350–630 Gb/s optical interconnect with direct detection NOMA-CAP and 7-core multi-core fiber

    Get PDF
    The ever-growing data traffic volume inside data centers caused by the popularization of cloud services and edge computing demands scalable and cost-efficient network infrastructures. With this premise, optical interconnects have recently gained more and more research attention as a key building block to ensure end-to-end energy efficient solutions, offering high throughput, low latency and reduced energy consumption compared to current networks based on active optical cables. An efficient way for performing such optical interconnects is to make use of multi-core fibers (MCFs), which enables the multiplexing of several spatial channels, each using a different core inside the same fiber cladding. Moreover, non-orthogonal multiple access combined with multi-band carrierless amplitude and phase modulation (NOMA-CAP) has been recently proposed as a potential candidate to increase the network capacity and an efficiency/flexibility resource management. In this paper, using direct detection we experimentally demonstrate the transmission of NOMA-CAP signals through a 2 km MCF with 7 spatial channels for high capacity optical interconnect applications. The results show negligible transmission penalty for different total aggregated traffics ranging from 350 Gb/s to 630 Gb/s.This work was supported in part by ALLIANCE (TEC2017-90034-C2-2-R) project co-funded by FEDER, the European Union’s Horizon 2020 research and innovation programme under grant agreement no780997 (plaCMOS), as well as MINECO FPI-BES-2015-074302Peer ReviewedPostprint (author's final draft

    A new vision of software defined radio: from academic experimentation to industrial explotation

    Get PDF
    The broad objective of this study is to examine the role of Software Defined Radio in an industrial field. Basically examines the changes that have to be done to achieve moving this technology in a commercial domain. It is important to predict the impacts of the introduction of Software Defined Radio in the telecommunications industry because it is a real future that is coming. The project starts with the evolution of mobile telecommunications systems through the history. Following this, Software Defined Radio is defined and its main features are commented such as its architecture. Moreover, it wants to predict the changes that the telecommunications industry will might suffer with the introduction of SDR and some future structural and organizational variations are suggested. Additionally, it is discussed the positive and negative aspects of the introduction of SDR in the commercial domain from different points of view and finally, the future SDR mobile phone is described with its possible hardware and software.Outgoin
    corecore