14,196 research outputs found

    A multiagent system for the analysis of sequence data

    Get PDF
    The analysis of sequence data requires the processing of the data obtained from sequencers for their subsequent comparison with genomes. The information recovered from the sequencers must be assembled and aligned in order to recover the variations that exist in the patient DNA. This study proposes a system to detect and classify variations by integrating information taken from biomedical databases. The system incorporates different algorithms to search for differences as compared to the reference genome for patients

    Analysis and design of multiagent systems using MAS-CommonKADS

    Get PDF
    This article proposes an agent-oriented methodology called MAS-CommonKADS and develops a case study. This methodology extends the knowledge engineering methodology CommonKADSwith techniquesfrom objectoriented and protocol engineering methodologies. The methodology consists of the development of seven models: Agent Model, that describes the characteristics of each agent; Task Model, that describes the tasks that the agents carry out; Expertise Model, that describes the knowledge needed by the agents to achieve their goals; Organisation Model, that describes the structural relationships between agents (software agents and/or human agents); Coordination Model, that describes the dynamic relationships between software agents; Communication Model, that describes the dynamic relationships between human agents and their respective personal assistant software agents; and Design Model, that refines the previous models and determines the most suitable agent architecture for each agent, and the requirements of the agent network

    Soft behaviour modelling of user communities

    Get PDF
    A soft modelling approach for describing behaviour in on-line user communities is introduced in this work. Behaviour models of individual users in dynamic virtual environments have been described in the literature in terms of timed transition automata; they have various drawbacks. Soft multi/agent behaviour automata are defined and proposed to describe multiple user behaviours and to recognise larger classes of user group histories, such as group histories which contain unexpected behaviours. The notion of deviation from the user community model allows defining a soft parsing process which assesses and evaluates the dynamic behaviour of a group of users interacting in virtual environments, such as e-learning and e-business platforms. The soft automaton model can describe virtually infinite sequences of actions due to multiple users and subject to temporal constraints. Soft measures assess a form of distance of observed behaviours by evaluating the amount of temporal deviation, additional or omitted actions contained in an observed history as well as actions performed by unexpected users. The proposed model allows the soft recognition of user group histories also when the observed actions only partially meet the given behaviour model constraints. This approach is more realistic for real-time user community support systems, concerning standard boolean model recognition, when more than one user model is potentially available, and the extent of deviation from community behaviour models can be used as a guide to generate the system support by anticipation, projection and other known techniques. Experiments based on logs from an e-learning platform and plan compilation of the soft multi-agent behaviour automaton show the expressiveness of the proposed model

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    Asimovian Adaptive Agents

    Full text link
    The goal of this research is to develop agents that are adaptive and predictable and timely. At first blush, these three requirements seem contradictory. For example, adaptation risks introducing undesirable side effects, thereby making agents' behavior less predictable. Furthermore, although formal verification can assist in ensuring behavioral predictability, it is known to be time-consuming. Our solution to the challenge of satisfying all three requirements is the following. Agents have finite-state automaton plans, which are adapted online via evolutionary learning (perturbation) operators. To ensure that critical behavioral constraints are always satisfied, agents' plans are first formally verified. They are then reverified after every adaptation. If reverification concludes that constraints are violated, the plans are repaired. The main objective of this paper is to improve the efficiency of reverification after learning, so that agents have a sufficiently rapid response time. We present two solutions: positive results that certain learning operators are a priori guaranteed to preserve useful classes of behavioral assurance constraints (which implies that no reverification is needed for these operators), and efficient incremental reverification algorithms for those learning operators that have negative a priori results

    An Intelligent Automation Platform for Rapid Bioprocess Design.

    Get PDF
    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity
    • …
    corecore