3,475 research outputs found

    Application of Neural-Like P Systems With State Values for Power Coordination of Photovoltaic/Battery Microgrids

    Get PDF
    The power coordination control of a photovoltaic/battery microgrid is performed with a novel bio-computing model within the framework of membrane computing. First, a neural-like P system with state values (SVNPS) is proposed for describing complex logical relationships between different modes of Photovoltaic (PV) units and energy storage units. After comparing the objects in the neurons with the thresholds, state values will be obtained to determine the con guration of the SVNPS. Considering the characteristics of PV/battery microgrids, an operation control strategy based on bus voltages of the point of common coupling and charging/discharging statuses of batteries is proposed. At rst, the SVNPS is used to construct the complicated unit working modes; each unit of the microgrid can adjust the operation modes automatically. After that, the output power of each unit is reasonably coordinated to ensure the operation stability of the microgrid. Finally, a PV/battery microgrid, including two PV units, one storage unit, and some loads are taken into consideration, and experimental results show the feasibility and effectiveness of the proposed control strategy and the SVNPS-based power coordination control models

    Intensity-based image registration using multiple distributed agents

    Get PDF
    Image registration is the process of geometrically aligning images taken from different sensors, viewpoints or instances in time. It plays a key role in the detection of defects or anomalies for automated visual inspection. A multiagent distributed blackboard system has been developed for intensity-based image registration. The images are divided into segments and allocated to agents on separate processors, allowing parallel computation of a similarity metric that measures the degree of likeness between reference and sensed images after the application of a transform. The need for a dedicated control module is removed by coordination of agents via the blackboard. Tests show that additional agents increase speed, provided the communication capacity of the blackboard is not saturated. The success of the approach in achieving registration, despite significant misalignment of the original images, is demonstrated in the detection of manufacturing defects on screen-printed plastic bottles and printed circuit boards

    Simulating activities: Relating motives, deliberation, and attentive coordination

    Get PDF
    Activities are located behaviors, taking time, conceived as socially meaningful, and usually involving interaction with tools and the environment. In modeling human cognition as a form of problem solving (goal-directed search and operator sequencing), cognitive science researchers have not adequately studied “off-task” activities (e.g., waiting), non-intellectual motives (e.g., hunger), sustaining a goal state (e.g., playful interaction), and coupled perceptual-motor dynamics (e.g., following someone). These aspects of human behavior have been considered in bits and pieces in past research, identified as scripts, human factors, behavior settings, ensemble, flow experience, and situated action. More broadly, activity theory provides a comprehensive framework relating motives, goals, and operations. This paper ties these ideas together, using examples from work life in a Canadian High Arctic research station. The emphasis is on simulating human behavior as it naturally occurs, such that “working” is understood as an aspect of living. The result is a synthesis of previously unrelated analytic perspectives and a broader appreciation of the nature of human cognition. Simulating activities in this comprehensive way is useful for understanding work practice, promoting learning, and designing better tools, including human-robot systems

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems
    • 

    corecore