1,719 research outputs found

    Robust Mission Design Through Evidence Theory and Multi-Agent Collaborative Search

    Full text link
    In this paper, the preliminary design of a space mission is approached introducing uncertainties on the design parameters and formulating the resulting reliable design problem as a multiobjective optimization problem. Uncertainties are modelled through evidence theory and the belief, or credibility, in the successful achievement of mission goals is maximised along with the reliability of constraint satisfaction. The multiobjective optimisation problem is solved through a novel algorithm based on the collaboration of a population of agents in search for the set of highly reliable solutions. Two typical problems in mission analysis are used to illustrate the proposed methodology

    A Parameterisation of Algorithms for Distributed Constraint Optimisation via Potential Games

    No full text
    This paper introduces a parameterisation of learning algorithms for distributed constraint optimisation problems (DCOPs). This parameterisation encompasses many algorithms developed in both the computer science and game theory literatures. It is built on our insight that when formulated as noncooperative games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence properties of algorithms developed in the computer science literature using game theoretic methods. Furthermore, our parameterisation can assist system designers by making the pros and cons of, and the synergies between, the various DCOP algorithm components clear

    AED: An Anytime Evolutionary DCOP Algorithm

    Get PDF
    Evolutionary optimization is a generic population-based metaheuristic that can be adapted to solve a wide variety of optimization problems and has proven very effective for combinatorial optimization problems. However, the potential of this metaheuristic has not been utilized in Distributed Constraint Optimization Problems (DCOPs), a well-known class of combinatorial optimization problems prevalent in Multi-Agent Systems. In this paper, we present a novel population-based algorithm, Anytime Evolutionary DCOP (AED), that uses evolutionary optimization to solve DCOPs. In AED, the agents cooperatively construct an initial set of random solutions and gradually improve them through a new mechanism that considers an optimistic approximation of local benefits. Moreover, we present a new anytime update mechanism for AED that identifies the best among a distributed set of candidate solutions and notifies all the agents when a new best is found. In our theoretical analysis, we prove that AED is anytime. Finally, we present empirical results indicating AED outperforms the state-of-the-art DCOP algorithms in terms of solution quality.Comment: 9 pages, 6 figures, 2 tables. Appeared in the proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2020

    A Unified Framework for Solving Multiagent Task Assignment Problems

    Get PDF
    Multiagent task assignment problem descriptors do not fully represent the complex interactions in a multiagent domain, and algorithmic solutions vary widely depending on how the domain is represented. This issue is compounded as related research fields contain descriptors that similarly describe multiagent task assignment problems, including complex domain interactions, but generally do not provide the mechanisms needed to solve the multiagent aspect of task assignment. This research presents a unified approach to representing and solving the multiagent task assignment problem for complex problem domains. Ideas central to multiagent task allocation, project scheduling, constraint satisfaction, and coalition formation are combined to form the basis of the constrained multiagent task scheduling (CMTS) problem. Basic analysis reveals the exponential size of the solution space for a CMTS problem, approximated by O(2n(m+n)) based on the number of agents and tasks involved in a problem. The shape of the solution space is shown to contain numerous discontinuous regions due to the complexities involved in relational constraints defined between agents and tasks. The CMTS descriptor represents a wide range of classical and modern problems, such as job shop scheduling, the traveling salesman problem, vehicle routing, and cooperative multi-object tracking. Problems using the CMTS representation are solvable by a suite of algorithms, with varying degrees of suitability. Solution generating methods range from simple random scheduling to state-of-the-art biologically inspired approaches. Techniques from classical task assignment solvers are extended to handle multiagent task problems where agents can also multitask. Additional ideas are incorporated from constraint satisfaction, project scheduling, evolutionary algorithms, dynamic coalition formation, auctioning, and behavior-based robotics to highlight how different solution generation strategies apply to the complex problem space

    Multi-Objective Constraint Satisfaction for Mobile Robot Area Defense

    Get PDF
    In developing multi-robot cooperative systems, there are often competing objectives that need to be met. For example in automating area defense systems, multiple robots must work together to explore the entire area, and maintain consistent communications to alert the other agents and ensure trust in the system. This research presents an algorithm that tasks robots to meet the two specific goals of exploration and communication maintenance in an uncoordinated environment reducing the need for a user to pre-balance the objectives. This multi-objective problem is defined as a constraint satisfaction problem solved using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Both goals of exploration and communication maintenance are described as fitness functions in the algorithm that would satisfy their corresponding constraints. The exploration fitness was described in three ways to diversify the way exploration was measured, whereas the communication maintenance fitness was calculated as the number of independent clusters of agents. Applying the algorithm to the area defense problem, results show exploration and communication without coordination are two diametrically opposed goals, in which one may be favored, but only at the expense of the other. This work also presents suggestions for anyone looking to take further steps in developing a physically grounded solution to this area defense problem

    On the Complexities of the Design of Water Distribution Networks

    Full text link
    Water supply is one of the most recognizable and important public services contributing to quality of life. Water distribution networks WDNs are extremely complex assets. A number of complex tasks, such as design, planning, operation, maintenance, and management, are inherently associated with such networks. In this paper, we focus on the design of a WDN, which is a wide and open problem in hydraulic engineering. This problem is a large-scale combinatorial, nonlinear, nonconvex, multiobjective optimization problem, involving various types of decision variables and many complex implicit constraints. To handle this problem, we provide a synergetic association between swarm intelligence and multiagent systems where human interaction is also enabled. This results in a powerful collaborative system for finding solutions to such a complex hydraulic engineering problem. All the ingredients have been integrated into a software tool that has also been shown to efficiently solve problems from other engineering fields.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Direccion General de Investigacion of the Ministerio de Educacion y Ciencia, and ACOMP/2010/146 of the Conselleria d'Educacio of the Generalitat Valenciana. The first author is also indebted to the Universitat Politecnica de Valencia for the sabbatical leave granted during the first semester of 2011. The use of English in this paper was revised by John Rawlins.Izquierdo SebastiĂĄn, J.; Montalvo Arango, I.; PĂ©rez GarcĂ­a, R.; MatĂ­as, A. (2012). On the Complexities of the Design of Water Distribution Networks. Mathematical Problems in Engineering. 2012:1-25. https://doi.org/10.1155/2012/9479611252012Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Izquierdo, J., PĂ©rez, R., & Iglesias, P. L. (2004). Mathematical models and methods in the water industry. Mathematical and Computer Modelling, 39(11-12), 1353-1374. doi:10.1016/j.mcm.2004.06.012Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Montalvo, I., Izquierdo, J., PĂ©rez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., PĂ©rez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., PĂ©rez-GarcĂ­a, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015MartĂ­nez, J. B. (2010). Cost and reliability comparison between branched and looped water supply networks. Journal of Hydroinformatics, 12(2), 150-160. doi:10.2166/hydro.2009.080Goulter, I. C. (1992). Systems Analysis in Water‐Distribution Network Design: From Theory to Practice. Journal of Water Resources Planning and Management, 118(3), 238-248. doi:10.1061/(asce)0733-9496(1992)118:3(238)Park, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)Tanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Morgan, D. R., & Goulter, I. C. (1985). Optimal urban water distribution design. Water Resources Research, 21(5), 642-652. doi:10.1029/wr021i005p00642Walters, G. A., & Knezevic, J. (1989). Discussion of « Reliability‐Based Optimization Model for Water Distribution Systems » by Yu‐Chun Su, Larry W. Mays, Ning Duan, and Kevin E. Lansey (December, 1987, Vol. 113, No. 12). Journal of Hydraulic Engineering, 115(8), 1157-1158. doi:10.1061/(asce)0733-9429(1989)115:8(1157)LOGANATHAN, G. V., SHERALI, H. D., & SHAH, M. P. (1990). A TWO-PHASE NETWORK DESIGN HEURISTIC FOR MINIMUM COST WATER DISTRIBUTION SYSTEMS UNDER A RELIABILITY CONSTRAINT. Engineering Optimization, 15(4), 311-336. doi:10.1080/03052159008941160Bouchart, F., & Goulter, I. (1991). Reliability Improvements in Design of Water Distribution Networks Recognizing Valve Location. Water Resources Research, 27(12), 3029-3040. doi:10.1029/91wr00590Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Xu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Su, Y., Mays, L. W., Duan, N., & Lansey, K. E. (1987). Reliability‐Based Optimization Model for Water Distribution Systems. Journal of Hydraulic Engineering, 113(12), 1539-1556. doi:10.1061/(asce)0733-9429(1987)113:12(1539)Cullinane, M. J., Lansey, K. E., & Mays, L. W. (1992). Optimization‐Availability‐Based Design of Water‐Distribution Networks. Journal of Hydraulic Engineering, 118(3), 420-441. doi:10.1061/(asce)0733-9429(1992)118:3(420)Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Montalvo, I., Izquierdo, J., Schwarze, S., & PĂ©rez-GarcĂ­a, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Izquierdo, J., Montalvo, I., PĂ©rez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Dong, Y., Tang, J., Xu, B., & Wang, D. (2005). An application of swarm optimization to nonlinear programming. Computers & Mathematics with Applications, 49(11-12), 1655-1668. doi:10.1016/j.camwa.2005.02.006Jin, Y.-X., Cheng, H.-Z., Yan, J., & Zhang, L. (2007). New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research, 77(3-4), 227-233. doi:10.1016/j.epsr.2006.02.016Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Izquierdo, J., Montalvo, I., PĂ©rez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Herrera, M., Izquierdo, J., Montalvo, I., GarcĂ­a-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Molina, J., Santana, L. V., HernĂĄndez-DĂ­az, A. G., Coello Coello, C. A., & Caballero, R. (2009). g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research, 197(2), 685-692. doi:10.1016/j.ejor.2008.07.01510.1029/89WR02879. (2010). Water Resources Research. doi:10.1029/89wr02879Savic, D. A., & Walters, G. A. (1997). Genetic Algorithms for Least-Cost Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 123(2), 67-77. doi:10.1061/(asce)0733-9496(1997)123:2(67)Zecchin, A. C., Simpson, A. R., Maier, H. R., & Nixon, J. B. (2005). Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Transactions on Evolutionary Computation, 9(2), 175-191. doi:10.1109/tevc.2005.844168Yurong Liu, Zidong Wang, Jinling Liang, & Xiaohui Liu. (2009). Stability and Synchronization of Discrete-Time Markovian Jumping Neural Networks With Mixed Mode-Dependent Time Delays. IEEE Transactions on Neural Networks, 20(7), 1102-1116. doi:10.1109/tnn.2009.2016210Jinling Liang, Zidong Wang, & Xiaohui Liu. (2009). State Estimation for Coupled Uncertain Stochastic Networks With Missing Measurements and Time-Varying Delays: The Discrete-Time Case. IEEE Transactions on Neural Networks, 20(5), 781-793. doi:10.1109/tnn.2009.2013240Zidong Wang, Yao Wang, & Yurong Liu. (2010). Global Synchronization for Discrete-Time Stochastic Complex Networks With Randomly Occurred Nonlinearities and Mixed Time Delays. IEEE Transactions on Neural Networks, 21(1), 11-25. doi:10.1109/tnn.2009.2033599Bo Shen, Zidong Wang, & Xiaohui Liu. (2011). Bounded H∞H_{\infty} Synchronization and State Estimation for Discrete Time-Varying Stochastic Complex Networks Over a Finite Horizon. IEEE Transactions on Neural Networks, 22(1), 145-157. doi:10.1109/tnn.2010.209066
    • 

    corecore