11 research outputs found

    Spectral efficiency and optimal medium access control of random access systems over large random spreading CDMA

    Full text link
    This paper analyzes the spectral efficiency as a function of medium access control (MAC) for large random spreading CDMA random access systems that employ a linear receiver. It is shown that located at higher than the physical layer, MAC along with spreading and power allocation can effectively perform spectral efficiency maximization and near-far mitigation.Comment: To appear in IEEE Trans. on Communication

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e ComputadoresThe forthcoming generation of mobile communications, 5G, will settle a new standard for a larger bandwidth and better Quality of Service (QoS). With the exploding growth rate of user generated data, wireless standards must cope with this growth and at the same time be energy efficient to avoid depleting the batteries of wireless devices. Besides these issues, in a broadband wireless setting QoS can be severely affected from a multipath dispersive channel and therefore be energy demanding. Cross-layered architectures are a good choice to enhance the overall performance of a wireless system. Examples of cross-layered Physical (PHY) - Medium Access Control (MAC) architectures are type-II Diversity Combining (DC) Hybrid-ARQ (H-ARQ) and Multi-user Detection (MUD) schemes. Cross-layered type-II DC H-ARQ schemes reuse failed packet transmissions to enhance data reception on posterior retransmissions; MUD schemes reuse data information from previously collided packets on posterior retransmissions to enhance data reception. For a multipath dispersive channel, a PHY layer analytical model is proposed for Single-Carrier with Frequency Domain Equalization (SC-FDE) that supports DC H-ARQ and MUD. Based on this analytical model, three PHY-MAC protocols are proposed. A crosslayered Time Division Multiple Access (TDMA) scheme that uses DC H-ARQ is modeled and its performance is studied in this document; the performance analysis shows that the scheme performs better with DC and achieves a better energy efficiency at the cost of a higher delay. A novel cross-layered prefix-assisted Direct-Sequence Code Division Multiple Access (DS-CDMA) scheme is proposed and modeled in this document, it uses principles of DC and MUD. This protocol performs better by means of additional retransmissions, achieving better energy efficiency, at the cost of higher redundancy from a code spreading gain. Finally, a novel cross-layered protocol H-ARQ Network Division Multiple Access (H-NDMA) is proposed and modeled, where the combination of DC H-ARQ and MUD is used with the intent of maximizing the system capacity with a lower delay; system results show that the proposed scheme achieves better energy efficiency and a better performance at the cost of a higher number of retransmissions. A comparison of the three cross-layered protocols is made, using the PHY analytical model, under normalized conditions using the same amount of maximum redundancy. Results show that the H-NDMA protocol, in general, obtains the best results, achieving a good performance and a good energy efficiency for a high channel load and low Signal-to-Noise Ratio (SNR). TDMA with DC H-ARQ achieves the best energy efficiency, although presenting the worst delay. Prefix-assisted DS-CDMA in the other hand shows good delay results but presents the worst throughput and energy efficiency

    Protocol for Extreme Low Latency M2M Communication Networks

    Get PDF
    As technology evolves, more Machine to Machine (M2M) deployments and mission critical services are expected to grow massively, generating new and diverse forms of data traffic, posing unprecedented challenges in requirements such as delay, reliability, energy consumption and scalability. This new paradigm vindicates a new set of stringent requirements that the current mobile networks do not support. A new generation of mobile networks is needed to attend to this innovative services and requirements - the The fifth generation of mobile networks (5G) networks. Specifically, achieving ultra-reliable low latency communication for machine to machine networks represents a major challenge, that requires a new approach to the design of the Physical (PHY) and Medium Access Control (MAC) layer to provide these novel services and handle the new heterogeneous environment in 5G. The current LTE Advanced (LTE-A) radio access network orthogonality and synchronization requirements are obstacles for this new 5G architecture, since devices in M2M generate bursty and sporadic traffic, and therefore should not be obliged to follow the synchronization of the LTE-A PHY layer. A non-orthogonal access scheme is required, that enables asynchronous access and that does not degrade the spectrum. This dissertation addresses the requirements of URLLC M2M traffic at the MAC layer. It proposes an extension of the M2M H-NDMA protocol for a multi base station scenario and a power control scheme to adapt the protocol to the requirements of URLLC. The system and power control schemes performance and the introduction of more base stations are analyzed in a system level simulator developed in MATLAB, which implements the MAC protocol and applies the power control algorithm. Results showed that with the increase in the number of base stations, delay can be significantly reduced and the protocol supports more devices without compromising delay or reliability bounds for Ultra-Reliable and Low Latency Communication (URLLC), while also increasing the throughput. The extension of the protocol will enable the study of different power control algorithms for more complex scenarios and access schemes that combine asynchronous and synchronous access

    Optimum Design of Spectral Efficient Green Wireless Communications

    Get PDF
    This dissertation focuses on the optimum design of spectral efficient green wireless communications. Energy efficiency (EE), which is defined as the inverse of average energy required to successfully deliver one information bit from a source to its destination, and spectral efficiency (SE), which is defined as the average data rate per unit bandwidth, are two fundamental performance metrics of wireless communication systems. We study the optimum designs of a wide range of practical wireless communication systems that can either maximize EE, or SE, or achieve a balanced tradeoff between the two metrics. There are three objectives in this dissertation. First, an accurate frame error rate (FER) expression is developed for practical coded wireless communication systems operating in quasi-static Rayleigh fading channels. The new FER expression enables the accurate modeling of EE and SE for various wireless communication systems. Second, the optimum designs of automatic repeat request (ARQ) and hybrid ARQ (HARQ) systems are performed to by using the EE and SE as design metrics. Specifically, a new metric of normalized EE, which is defined as the EE normalized by the SE, is proposed to achieve a balanced tradeoff between the EE and SE. Third, a robust frequency-domain on-off accumulative transmission (OOAT) scheme has been developed to achieve collision-tolerant media access control (CT-MAC) in a wireless network. The proposed frequency domain OOAT scheme can improve the SE and EE by allowing multiple users to transmit simultaneously over the same frequency bands, and the signal collisions at the receiver can be resolved by using signal processing techniques in the physical layer

    Advanced PHY/MAC Design for Infrastructure-less Wireless Networks

    Get PDF
    Wireless networks play a key role in providing information exchange among distributed mobile devices. Nowadays, Infrastructure-Less Wireless Networks (ILWNs), which include ad hoc and sensor networks, are gaining increasing popularity as they do not need a fixed infrastructure. Simultaneously, multiple research initiatives have led to different findings at the physical (PHY) layer of the wireless communication systems, which can effectively be adopted in ILWNs. However, the distributed nature of ILWNs demand for different network control policies that should have into account the most recent findings to increase the network performance. This thesis investigates the adoption of Multi-Packet Reception (MPR) techniques at the PHY layer of distributed wireless networks, which is itself a challenging task due to the lack of a central coordinator and the spatial distribution of the nodes. The work starts with the derivation of an MPR system performance model that allows to determine optimal points of operation for different radio conditions. The model developed and validated in this thesis is then used to study the performance of ILWNs in high density of transmitters and when the spectrum can be sensed a priori (i.e. before each transmission). Based on the theoretical analysis developed in the thesis, we show that depending on the propagation conditions the spectrum sensing can reduce the network throughput to a level where its use should be avoided. At the final stage, we propose a crosslayered architecture that improves the capacity of an ILWN. Different Medium Access Control (MAC) schemes for ILWNs adopting MPR communications are proposed and their performance is theoretically characterized. We propose a cross-layer optimization methodology that considers the features of the MPR communication scheme together with the MAC performance. The proposed cross-layer optimization methodology improves the throughput of ILWNs, which is validated through theoretical analysis and multiple simulation results

    Energy and Spectral Efficient Wireless Communications

    Get PDF
    Energy and spectrum are two precious commodities for wireless communications. How to improve the energy and spectrum efficiency has become two critical issues for the designs of wireless communication systems. This dissertation is devoted to the development of energy and spectral efficient wireless communications. The developed techniques can be applied to a wide range of wireless communication systems, such as wireless sensor network (WSN) designed for structure health monitoring (SHM), medium access control (MAC) for multi-user systems, and cooperative spectrum sensing in cognitive radio systems. First, to improve the energy efficiency in SHM WSN, a new ultra low power (ULP) WSN is proposed to monitor the vibration properties of structures such as buildings, bridges, and the wings and bodies of aircrafts. The new scheme integrates energy harvesting, data sensing, and wireless communication into a unified process, and it achieves significant energy savings compared to existing WSNs. Second, a cross-layer collision tolerant (CT) MAC scheme is proposed to improve energy and spectral efficiency in a multi-user system with shared medium. When two users transmit simultaneously over a shared medium, a collision happens at the receiver. Conventional MAC schemes will discard the collided signals, which result in a waste of the precious energy and spectrum resources. In our proposed CT-MAC scheme, each user transmits multiple weighted replicas of a packet at randomly selected data slots in a frame, and the indices of the selected slots are transmitted in a special collision-free position slot at the beginning of each frame. Collisions of the data slots in the MAC layer are resolved by using multiuser detection (MUD) in the PHY layer. Compared to existing schemes, the proposed CT-MAC scheme can support more simultaneous users with a higher throughput. Third, a new cooperative spectrum sensing scheme is proposed to improve the energy and spectral efficiency of a cognitive radio network. A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive radio network with two secondary users (SUs) performing cooperative spectrum sensing through a fusion center (FC). The proposed scheme can achieve significant performance gains compared to existing schemes

    Energy Efficient and Cooperative Solutions for Next-Generation Wireless Networks

    Get PDF
    Energy efficiency is increasingly important for next-generation wireless systems due to the limited battery resources of mobile clients. While fourth generation cellular standards emphasize low client battery consumption, existing techniques do not explicitly focus on reducing power that is consumed when a client is actively communicating with the network. Based on high data rate demands of modern multimedia applications, active mode power consumption is expected to become a critical consideration for the development and deployment of future wireless technologies. Another reason for focusing more attention on energy efficient studies is given by the relatively slow progress in battery technology and the growing quality of service requirements of multimedia applications. The disproportion between demanded and available battery capacity is becoming especially significant for small-scale mobile client devices, where wireless power consumption dominates within the total device power budget. To compensate for this growing gap, aggressive improvements in all aspects of wireless system design are necessary. Recent work in this area indicates that joint link adaptation and resource allocation techniques optimizing energy efficient metrics can provide a considerable gain in client power consumption. Consequently, it is crucial to adapt state-of-the-art energy efficient approaches for practical use, as well as to illustrate the pros and cons associated with applying power-bandwidth optimization to improve client energy efficiency and develop insights for future research in this area. This constitutes the first objective of the present research. Together with energy efficiency, next-generation cellular technologies are emphasizing stronger support for heterogeneous multimedia applications. Since the integration of diverse services within a single radio platform is expected to result in higher operator profits and, at the same time, reduce network management expenses, intensive research efforts have been invested into design principles of such networks. However, as wireless resources are limited and shared by clients, service integration may become challenging. A key element in such systems is the packet scheduler, which typically helps ensure that the individual quality of service requirements of wireless clients are satisfied. In contrastingly different distributed wireless environments, random multiple access protocols are beginning to provide mechanisms for statistical quality of service assurance. However, there is currently a lack of comprehensive analytical frameworks which allow reliable control of the quality of service parameters for both cellular and local area networks. Providing such frameworks is therefore the second objective of this thesis. Additionally, the study addresses the simultaneous operation of a cellular and a local area network in spectrally intense metropolitan deployments and solves some related problems. Further improving the performance of battery-driven mobile clients, cooperative communications are sought as a promising and practical concept. In particular, they are capable of mitigating the negative effects of fading in a wireless channel and are thus expected to enhance next-generation cellular networks in terms of client spectral and energy efficiencies. At the cell edges or in areas missing any supportive relaying infrastructure, client-based cooperative techniques are becoming even more important. As such, a mobile client with poor channel quality may take advantage of neighboring clients which would relay data on its behalf. The key idea behind the concept of client relay is to provide flexible and distributed control over cooperative communications by the wireless clients themselves. By contrast to fully centralized control, this is expected to minimize overhead protocol signaling and hence ensure simpler implementation. Compared to infrastructure relay, client relay will also be cheaper to deploy. Developing the novel concept of client relay, proposing simple and feasible cooperation protocols, and analyzing the basic trade-offs behind client relay functionality become the third objective of this research. Envisioning the evolution of cellular technologies beyond their fourth generation, it appears important to study a wireless network capable of supporting machine-to-machine applications. Recent standardization documents cover a plethora of machine-to-machine use cases, as they also outline the respective technical requirements and features according to the application or network environment. As follows from this activity, a smart grid is one of the primary machine-to-machine use cases that involves meters autonomously reporting usage and alarm information to the grid infrastructure to help reduce operational cost, as well as regulate a customer's utility usage. The preliminary analysis of the reference smart grid scenario indicates weak system architecture components. For instance, the large population of machine-to-machine devices may connect nearly simultaneously to the wireless infrastructure and, consequently, suffer from excessive network entry delays. Another concern is the performance of cell-edge machine-to-machine devices with weak wireless links. Therefore, mitigating the above architecture vulnerabilities and improving the performance of future smart grid deployments is the fourth objective of this thesis. Summarizing, this thesis is generally aimed at the improvement of energy efficient properties of mobile devices in next-generation wireless networks. The related research also embraces a novel cooperation technique where clients may assist each other to increase per-client and network-wide performance. Applying the proposed solutions, the operation time of mobile clients without recharging may be increased dramatically. Our approach incorporates both analytical and simulation components to evaluate complex interactions between the studied objectives. It brings important conclusions about energy efficient and cooperative client behaviors, which is crucial for further development of wireless communications technologies
    corecore