967 research outputs found

    Environmental boundary tracking and estimation using multiple autonomous vehicles

    Get PDF
    In this paper, we develop a framework for environmental boundary tracking and estimation by considering the boundary as a hidden Markov model (HMM) with separated observations collected from multiple sensing vehicles. For each vehicle, a tracking algorithm is developed based on Page’s cumulative sum algorithm (CUSUM), a method for change-point detection, so that individual vehicles can autonomously track the boundary in a density field with measurement noise. Based on the data collected from sensing vehicles and prior knowledge of the dynamic model of boundary evolvement, we estimate the boundary by solving an optimization problem, in which prediction and current observation are considered in the cost function. Examples and simulation results are presented to verify the efficiency of this approach

    Distributed allocation of mobile sensing swarms in gyre flows

    Get PDF
    We address the synthesis of distributed control policies to enable a swarm of homogeneous mobile sensors to maintain a desired spatial distribution in a geophysical flow environment, or workspace. In this article, we assume the mobile sensors (or robots) have a "map" of the environment denoting the locations of the Lagrangian coherent structures or LCS boundaries. Based on this information, we design agent-level hybrid control policies that leverage the surrounding fluid dynamics and inherent environmental noise to enable the team to maintain a desired distribution in the workspace. We establish the stability properties of the ensemble dynamics of the distributed control policies. Since realistic quasi-geostrophic ocean models predict double-gyre flow solutions, we use a wind-driven multi-gyre flow model to verify the feasibility of the proposed distributed control strategy and compare the proposed control strategy with a baseline deterministic allocation strategy. Lastly, we validate the control strategy using actual flow data obtained by our coherent structure experimental testbed.Comment: 10 pages, 14 Figures, added reference

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido

    Acoustic motion estimation and control for an unmanned underwater vehicle in a structured environment

    Get PDF
    The problem of identification and navigation, guidance and control in unmanned underwater vehicles (UUVs) is addressed in this paper. A task-function-based guidance system and an acoustic motion estimation module have been integrated with a conventional UUV autopilot within a two-layered hierarchical architecture for closed-loop control. Basic techniques to estimate the robot dynamics using the sensors mounted on the vehicle have been investigated. The proposed identification techniques and navigation, guidance and control (NGC) system have been tested on Roby2, a UUV developed at the Istituto Automazione Navale of the Italian C.N.R. The experimental set-up, as well as the modalities and results, are discussed.Programma Nazionale di Recerche in Antartide (PNRA

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated
    corecore