13,143 research outputs found

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427

    A two-step learning approach for solving full and almost full cold start problems in dyadic prediction

    Full text link
    Dyadic prediction methods operate on pairs of objects (dyads), aiming to infer labels for out-of-sample dyads. We consider the full and almost full cold start problem in dyadic prediction, a setting that occurs when both objects in an out-of-sample dyad have not been observed during training, or if one of them has been observed, but very few times. A popular approach for addressing this problem is to train a model that makes predictions based on a pairwise feature representation of the dyads, or, in case of kernel methods, based on a tensor product pairwise kernel. As an alternative to such a kernel approach, we introduce a novel two-step learning algorithm that borrows ideas from the fields of pairwise learning and spectral filtering. We show theoretically that the two-step method is very closely related to the tensor product kernel approach, and experimentally that it yields a slightly better predictive performance. Moreover, unlike existing tensor product kernel methods, the two-step method allows closed-form solutions for training and parameter selection via cross-validation estimates both in the full and almost full cold start settings, making the approach much more efficient and straightforward to implement

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results

    Kernel-based Inference of Functions over Graphs

    Get PDF
    The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting -- and prevalent in several fields of study -- problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently by the signal processing on graphs community. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The herein analytical discussion is complemented by a set of numerical examples, which showcase the effectiveness of the presented techniques, as well as their merits related to state-of-the-art methods.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018). This chapter surveys recent work on kernel-based inference of functions over graphs including arXiv:1612.03615 and arXiv:1605.07174 and arXiv:1711.0930
    corecore