626 research outputs found

    Multi-Stream Management for Supporting Multi-Party 3D Tele-Immersive Environments

    Get PDF
    Three-dimensional tele-immersive (3DTI) environments have great potential to promote collaborative work among geographically distributed participants. However, extensive application of 3DTI environments is still hindered by problems pertaining to scalability, manageability and reliance of special-purpose components. Thus, one critical question is how to organize the acquisition, transmission and display of large volume real-time 3D visual data over commercially available computing and networking infrastructures so that .everybody. would be able to install and enjoy 3DTI environments for high quality tele-collaboration. In the thesis, we explore the design space from the angle of multi-stream Quality-of-Service (QoS) management to support multi-party 3DTI communication. In 3DTI environments, multiple correlated 3D video streams are deployed to provide a comprehensive representation of the physical scene. Traditional QoS approach in 2D and single-stream scenario has become inadequate. On the other hand, the existence of multiple streams provides unique opportunity for QoS provisioning. We propose an innovative cross-layer hierarchical and distributed multi-stream management middleware framework for QoS provisioning to fully enable multi-party 3DTI communication over general delivery infrastructure. The major contributions are as follows. First, we introduce the view model for representing the user interest in the application layer. The design revolves around the concept of view-aware multi-stream coordination, which leverages the central role of view semantics in 3D video systems. Second, in the stream differentiation layer we present the design of view to stream mapping, where a subset of relevant streams are selected based on the relative importance of each stream to the current view. Conventional streaming controllers focus on a fixed set of streams specified by the application. Different from all the others, in our management framework the application layer only specifies the view information while the underlying controller dynamically determines the set of streams to be managed. Third, in the stream coordination layer we present two designs applicable in different situations. In the case of end-to-end 3DTI communication, a learning-based controller is embedded which provides bandwidth allocation for relevant streams. In the case of multi-party 3DTI communication, we propose a novel ViewCast protocol to coordinate the multi-stream content dissemination upon an end-system overlay network

    Omnidirectional view and multi-modal streaming in 3D tele-immersion system

    Get PDF
    3D Tele-immersion (3DTI) technology allows full-body, multi-modal content delivery among geographically dispersed users. In 3DTI, user’s 3D model will be captured by multiple RGB-D (color plus depth) cameras surround- ing user’s body. In addition, various sensors (e.g., motion sensors, medical sensors, wearable gaming consoles, etc.) specified by the application will be included to deliver a multi-modal experience. In a traditional 2D live video streaming system, the interactivity of end users, choosing a specified viewpoint, has been crippled by the fact that they can only choose to see the physical scene captured by a physical camera, but not between two physical cameras. However, 3DTI system makes it possible rendering a 3D space where the viewers can view physical scene from arbitrary viewpoint. In this thesis, we present systematic solutions of omnidirectional view in 3D tele-immersion system in a real-time manner and in an on-demand streaming manner, called FreeViewer and OmniViewer, respectively. we provide a complete multi-modal 3D video streaming/rendering solution, which achieves the feature of omnidirectional view in monoscopic 3D systems

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Holographic and 3D teleconferencing and visualization: implications for terabit networked applications

    Get PDF
    Abstract not available

    Enabling geometry-based 3-D tele-immersion with fast mesh compression and linear rateless coding

    Get PDF
    3-D tele-immersion (3DTI) enables participants in remote locations to share, in real time, an activity. It offers users interactive and immersive experiences, but it challenges current media-streaming solutions. Work in the past has mainly focused on the efficient delivery of image-based 3-D videos and on realistic rendering and reconstruction of geometry-based 3-D objects. The contribution of this paper is a real-time streaming component for 3DTI with dynamic reconstructed geometry. This component includes both a novel fast compression method and a rateless packet protection scheme specifically designed towards the requirements imposed by real time transmission of live-reconstructed mesh geometry. Tests on a large dataset show an encoding speed-up up to ten times at comparable compression ratio and quality, when compared with the high-end MPEG-4 SC3DMC mesh encoders. The implemented rateless code ensures complete packet loss protection of the triangle mesh object and a delivery delay within interactive bounds. Contrary to most linear fountain codes, the designed codec enables real-time progressive decoding allowing partial decoding each time a packet is received. This approach is compared with transmission over TCP in packet loss rates and latencies, typical in managed WAN and MAN networks, and heavily outperforms it in terms of end-to-end delay. The streaming component has been integrated into a larger 3DTI environment that includes state of the art 3-D reconstruction and rendering modules. This resulted in a prototype that can capture, compress transmit, and render triangle mesh geometry in real-time in realistic internet conditions as shown in experiments. Compared with alternative methods, lower interactive end-to-end delay and frame rates over three times higher are achieved

    Correlated multi-streaming in distributed interactive multimedia systems

    Get PDF
    Distributed Interactive Multimedia Environments (DIMEs) enable geographically distributed people to interact with each other in a joint media-rich virtual environment for a wide range of activities, such as art performance, medical consultation, sport training, etc. The real-time collaboration is made possible by exchanging a set of multi-modal sensory streams over the network in real time. The characterization and evaluation of such multi-stream interactive environments is challenging because the traditional Quality of Service metrics (e.g., delay, jitter) are limited to a per stream basis. In this work, we present a novel ???Bundle of Streams??? concept to de???ne correlated multi-streams in DIMEs and present new cyber-physical, spatio-temporal QoS metrics to measure QoS over bundle of streams. We realize Bundle of Streams concept by presenting a novel paradigm of Bundle Streaming as a Service (SAS). We propose and develop SAS Kernel, a generic, distributed, modular and highly ???exible streaming kernel realizing SAS concept. We validate the Bundle of Streams model by comparing the QoS performance of bundle of streams over different transport protocols in a 3D tele-immersive testbed. Also, further experiments demonstrate that the SAS Kernel incurs low overhead in delay, CPU, and bandwidth demands

    Semantics-aware content delivery framework for 3D Tele-immersion

    Get PDF
    3D Tele-immersion (3DTI) technology allows full-body, multimodal interaction among geographically dispersed users, which opens a variety of possibilities in cyber collaborative applications such as art performance, exergaming, and physical rehabilitation. However, with its great potential, the resource and quality demands of 3DTI rise inevitably, especially when some advanced applications target resource-limited computing environments with stringent scalability demands. Under these circumstances, the tradeoffs between 1) resource requirements, 2) content complexity, and 3) user satisfaction in delivery of 3DTI services are magnified. In this dissertation, we argue that these tradeoffs of 3DTI systems are actually avoidable when the underlying delivery framework of 3DTI takes the semantic information into consideration. We introduce the concept of semantic information into 3DTI, which encompasses information about the three factors: environment, activity, and user role in 3DTI applications. With semantic information, 3DTI systems are able to 1) identify the characteristics of its computing environment to allocate computing power and bandwidth to delivery of prioritized contents, 2) pinpoint and discard the dispensable content in activity capturing according to properties of target application, and 3) differentiate contents by their contributions on fulfilling the objectives and expectation of user’s role in the application so that the adaptation module can allocate resource budget accordingly. With these capabilities we can change the tradeoffs into synergy between resource requirements, content complexity, and user satisfaction. We implement semantics-aware 3DTI systems to verify the performance gain on the three phases in 3DTI systems’ delivery chain: capturing phase, dissemination phase, and receiving phase. By introducing semantics information to distinct 3DTI systems, the efficiency improvements brought by our semantics-aware content delivery framework are validated under different application requirements, different scalability bottlenecks, and different user and application models. To sum up, in this dissertation we aim to change the tradeoff between requirements, complexity, and satisfaction in 3DTI services by exploiting the semantic information about the computing environment, the activity, and the user role upon the underlying delivery systems of 3DTI. The devised mechanisms will enhance the efficiency of 3DTI systems targeting on serving different purposes and 3DTI applications with different computation and scalability requirements

    remote laboratory experiments in a virtual immersive learning environment

    Get PDF
    TheVirtual Immersive Learning(VIL) test bench implements a virtual collaborative immersive environment, capable of integrating natural contexts and typical gestures, which may occur during traditional lectures, enhanced with advanced experimental sessions. The system architecture is described, along with the motivations, and the most significant choices, both hardware and software, adopted for its implementation. The novelty of the approach essentially relies on its capability of embedding functionalities that stem from various research results (mainly carried out within the VICOM national project), and "putting the pieces together" in a well-integrated framework. These features, along with its high portability, good flexibility, and, above all, low cost, make this approach appropriate for educational and training purposes, mainly concerning measurements on telecommunication systems, at universities and research centers, as well as enterprises. Moreover, the methodology can be employed for remote access to and sharing of costly measurement equipment in many different activities. The immersive characteristics of the framework are illustrated, along with performance measurements related to a specific application
    corecore