1,694 research outputs found

    Memetic Artificial Bee Colony Algorithm for Large-Scale Global Optimization

    Full text link
    Memetic computation (MC) has emerged recently as a new paradigm of efficient algorithms for solving the hardest optimization problems. On the other hand, artificial bees colony (ABC) algorithms demonstrate good performances when solving continuous and combinatorial optimization problems. This study tries to use these technologies under the same roof. As a result, a memetic ABC (MABC) algorithm has been developed that is hybridized with two local search heuristics: the Nelder-Mead algorithm (NMA) and the random walk with direction exploitation (RWDE). The former is attended more towards exploration, while the latter more towards exploitation of the search space. The stochastic adaptation rule was employed in order to control the balancing between exploration and exploitation. This MABC algorithm was applied to a Special suite on Large Scale Continuous Global Optimization at the 2012 IEEE Congress on Evolutionary Computation. The obtained results the MABC are comparable with the results of DECC-G, DECC-G*, and MLCC.Comment: CONFERENCE: IEEE Congress on Evolutionary Computation, Brisbane, Australia, 201

    A Hybrid Firefly and Multi-Strategy Artificial Bee Colony Algorithm

    Get PDF
    Many hard optimization problems have been efficiently solved by two notable swarm intelligence algorithms, artificial bee colony (ABC) and firefly algorithm (FA). In this paper, a collaborative hybrid algorithm based on firefly and multi-strategy artificial bee colony, abbreviated as FA-MABC, is proposed for solving single-objective optimization problems. In the proposed algorithm, FA investigates the search space globally to locate favorable regions of convergence. A novel multi-strategy ABC is employed to perform local search. The proposed algorithm incorporates a diversity measure to help in the switch criteria. The FA-MABC is tested on 40 benchmark functions with diverse complexities. Comparative results with the basic FA, ABC and other recent state-of-the-art metaheuristic algorithms demonstrate the competitive performance of the FA-MABC

    Fusion of Two Metaheuristic Approaches to Solve the Flight Gate Assignment Problem

    Get PDF
    AbstractOne of the most important activity in airport operations is the gate scheduling. It is concerned with finding an assignment of flights to terminal and ramp positions (gates), and an assignment of the start and completion times of the processing of a flight at its position. The objectives related to the flight gate assignment problem (FGAP) include the minimization of the number of flights assigned to remote terminals and the minimization of the total walking distance. The main aim of this research is to find a methodology to solve the FGAP. In this paper, we propose a hybrid approach called Biogeography-based Bee Colony Optimization (B-BCO). This approach is obtained fusing two metaheuristics: biogeography-based (BBO) and bee colony optimization (BCO) algorithms. The proposed B-BCO model integrates the BBO migration operator into to bee's search behaviour. Results highlight better performances of the proposed approach in solving FGAP when compared to BCO

    Survey on Various Aspects of Clustering in Wireless Sensor Networks Employing Classical, Optimization, and Machine Learning Techniques

    Get PDF
    A wide range of academic scholars, engineers, scientific and technology communities are interested in energy utilization of Wireless Sensor Networks (WSNs). Their extensive research is going on in areas like scalability, coverage, energy efficiency, data communication, connection, load balancing, security, reliability and network lifespan. Individual researchers are searching for affordable methods to enhance the solutions to existing problems that show unique techniques, protocols, concepts, and algorithms in the wanted domain. Review studies typically offer complete, simple access or a solution to these problems. Taking into account this motivating factor and the effect of clustering on the decline of energy, this article focuses on clustering techniques using various wireless sensor networks aspects. The important contribution of this paper is to give a succinct overview of clustering

    Optimal leach protocol with improved bat algorithm in wireless sensor networks

    Full text link
    © 2019, Korean Society for Internet Information. All rights reserved. A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT’s Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs)

    A Survey: Spider Monkey Optimization Algorithm

    Get PDF
    Swarm intelligence is a one of the areas for evaluating the optimization states. Many algorithms have been developed by simulating the swarming behaviour of various creatures like ants, honey bees, fishes, birds and their results are found as very motivating for solving optimization problems. In this paper, a new approach for optimization is proposed by modelling the social behaviour of spider monkeys. Spider monkeys have been categorized as fission-fusion social structure based animals. The animals which follow fission-fusion social systems, initially work in a large group and based on need after some time, they divide themselves in smaller groups led by an adult female for foraging. There- fore, the proposed strategy broadly classified as inspiration from the intelligent foraging behaviour of fission-fusion social structure based animals

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms
    • …
    corecore