136 research outputs found

    Review of neural modelling on cardiovascular rehabilitation active processes by using cycloergometers

    Get PDF
    Abstract publicado en EUROSIM 2019 Abstract Volume. ARGESIM Report 58, ISBN: 978-3-901608-92-6 (ebook), DOI: 10.11128/arep.58This work gathers important developments carried out in a specific area of the Biomedical Engineering which applies advanced models based on Artificial Neural Networks to improve Cardiovascular Rehabilitation (CR) processes by using Cycloergometers. This work presents an updated revision of proposals, focusing on different problems involved in CR and considering features and requirements nowadays taken into account during their modelling processes. Furthermore, the signals analysed in these models are studied and presented below. Among them, a review of solutions applied to CR processes, focused on Computational Intelligence are cited.UPV/EHU, Grupo de InvestigaciĂłn de Inteligencia Computaciona

    Review of neural modelling on cardiovascular rehabilitation active processes by using cycloergometers

    Get PDF
    Abstract publicado en EUROSIM 2019 Abstract Volume. ARGESIM Report 58, ISBN: 978-3-901608-92-6 (ebook), DOI: 10.11128/arep.58This work gathers important developments carried out in a specific area of the Biomedical Engineering which applies advanced models based on Artificial Neural Networks to improve Cardiovascular Rehabilitation (CR) processes by using Cycloergometers. This work presents an updated revision of proposals, focusing on different problems involved in CR and considering features and requirements nowadays taken into account during their modelling processes. Furthermore, the signals analysed in these models are studied and presented below. Among them, a review of solutions applied to CR processes, focused on Computational Intelligence are cited.UPV/EHU, Grupo de InvestigaciĂłn de Inteligencia Computaciona

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    Modified mass-spring system for physically based deformation modeling

    Get PDF
    Mass-spring systems are considered the simplest and most intuitive of all deformable models. They are computationally efficient, and can handle large deformations with ease. But they suffer several intrinsic limitations. In this book a modified mass-spring system for physically based deformation modeling that addresses the limitations and solves them elegantly is presented. Several implementations in modeling breast mechanics, heart mechanics and for elastic images registration are presented

    Convergence of Intelligent Data Acquisition and Advanced Computing Systems

    Get PDF
    This book is a collection of published articles from the Sensors Special Issue on "Convergence of Intelligent Data Acquisition and Advanced Computing Systems". It includes extended versions of the conference contributions from the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS’2019), Metz, France, as well as external contributions

    Modeling conjugate heat transfer phenomena for multi-physics simulations of combustion applications

    Get PDF
    Oxycombustion is seen as one mean to attain the wished goals in terms of efficiency optimisation and Greenhouse Effect Gases emissions reduction for industrial furnaces. The extreme operating conditions, high pressure and temperature, lead to a strong interaction between the different phenomena which take place inside the combustion chambe r: Combustion, turbulence and heat transfer. To better design these futur oxyfuel processes, a mean to study the related physics with a reasonable computational cost and return time. Such studies require the use of high-fidelity numerical resolution tools, and in order to model the multi-physics interaction in a cost efficient way, code coupling. The operating conditions being extreme : High pressure and temperature, a strong interaction exists between the different phenomena occuring inside the chamber. To better understand the physics inside oxycombustion chambers,a multiphysics high-fidelity simulation methodology is developped.Dans un souci d’optimisation des fours industriels et de réduction des émissions de gaz à effet de serre,l’oxy-combustion est considérée comme l’une des solutions d’avenir. Les conditions existantes dans les chambres d’oxycombustion créent une interaction forte entre les différents phénomènes : Combustion,turbulence et transferts de chaleur. Pour mieux dimensionner les configurations futures il est nécessaire de pouvoir étudier la physique qui y règne, et ce pour un coût et un temps de retour raisonnables. De tels études nécessitent l’emploi d’outils de simulation de haute fidélité,et afin de modéliser les interactions inter-phénomènes à un coût acceptable le couplage de codes est utilisé. C’est avec cet objectif que les travaux présentés dans ce manuscrit se concentrent sur la mise au point d’une méthodologie de couplage entre codes d’écoulements réactifs et de transfert de chaleur dans les parois pour la réalisation de simulations de haute-fidélité massivement parallèles prédictives des chambres futures

    Transient bioheat transfer analysis in biological tissues by fundamental-solution-based numerical methods

    No full text
    Taylor's expansion approach was applied to linearize the nonlinear term in the original nonlinear bioheat transfer governing equation. Then the DRM and the MFS was established to obtain the particular and homogeneous solutions. The influence of blood perfusion rate on temperature distribution in the skin tissue was analysed by changing the coefficients in the three expressions of blood perfusion rate. Numerical results showed that the variation of blood perfusion rate plays a significant role in the temperature distribution within the skin tissue. Finally, a meshless numerical scheme combining the operator splitting method (OSM), the RBF interpolation and the MFS was developed for solving transient nonlinear bioheat problems in two-dimensional skin tissue. In the numerical scheme, the nonlinearity caused by the temperature-dependent blood perfusion rate (TDBPR) is taken into consideration. In the procedure, the OSM is used to separate the Laplacian operator and the nonlinear source term, and then second-order time-stepping schemes are employed for approximating two splitting operators in order to convert the original governing equation into a linear nonhomogeneous Helmholtz-type governing equation (NHGE) at each time step. The full fields consisting of the particular and homogeneous solutions are enforced to fit the NHGE at interpolation points and the boundary conditions at boundary collocations to determine unknowns at each time step. The proposed method was verified by comparison with other methods. Furthermore, the sensitivity of the coefficients in cases of a linear and an exponential relationship of TDBPR was investigated to reveal their bioheat effect on the skin tissue

    Mesoscopic simulation of blood and general suspensions in flow

    Get PDF
    • …
    corecore