17,015 research outputs found

    A model for mobile content filtering on non-interactive recommendation systems

    Get PDF
    To overcome the problem of information overloading in mobile communication, a recommendation system can be used to help mobile device users. However, there are problems relating to sparsity of information from a first-time user in regard to initial rating of the content and the retrieval of relevant items. In order for the user to experience personalized content delivery via the mobile recommendation system, content filtering is necessary. This paper proposes an integrated method by using classification and association rule techniques for extracting knowledge from mobile content in a user's profile. The knowledge can be used to establish a model for new users and first rater on mobile content. The model recommends relevant content in the early stage during the connection based on the user's profile. The proposed method also facilitates association to be generated to link the first rater items to the top items identified from the outcomes of the classification and clustering processes. This can address the problem of sparsity in initial rating and new user's connection for non-interactive recommendation systems

    Discrete Factorization Machines for Fast Feature-based Recommendation

    Full text link
    User and item features of side information are crucial for accurate recommendation. However, the large number of feature dimensions, e.g., usually larger than 10^7, results in expensive storage and computational cost. This prohibits fast recommendation especially on mobile applications where the computational resource is very limited. In this paper, we develop a generic feature-based recommendation model, called Discrete Factorization Machine (DFM), for fast and accurate recommendation. DFM binarizes the real-valued model parameters (e.g., float32) of every feature embedding into binary codes (e.g., boolean), and thus supports efficient storage and fast user-item score computation. To avoid the severe quantization loss of the binarization, we propose a convergent updating rule that resolves the challenging discrete optimization of DFM. Through extensive experiments on two real-world datasets, we show that 1) DFM consistently outperforms state-of-the-art binarized recommendation models, and 2) DFM shows very competitive performance compared to its real-valued version (FM), demonstrating the minimized quantization loss. This work is accepted by IJCAI 2018.Comment: Appeared in IJCAI 201

    A personalized and context-aware news offer for mobile devices

    Get PDF
    For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer
    corecore