88 research outputs found

    Artificial intelligence in mammographic phenotyping of breast cancer risk: A narrative review

    Get PDF
    BACKGROUND: Improved breast cancer risk assessment models are needed to enable personalized screening strategies that achieve better harm-to-benefit ratio based on earlier detection and better breast cancer outcomes than existing screening guidelines. Computational mammographic phenotypes have demonstrated a promising role in breast cancer risk prediction. With the recent exponential growth of computational efficiency, the artificial intelligence (AI) revolution, driven by the introduction of deep learning, has expanded the utility of imaging in predictive models. Consequently, AI-based imaging-derived data has led to some of the most promising tools for precision breast cancer screening. MAIN BODY: This review aims to synthesize the current state-of-the-art applications of AI in mammographic phenotyping of breast cancer risk. We discuss the fundamentals of AI and explore the computing advancements that have made AI-based image analysis essential in refining breast cancer risk assessment. Specifically, we discuss the use of data derived from digital mammography as well as digital breast tomosynthesis. Different aspects of breast cancer risk assessment are targeted including (a) robust and reproducible evaluations of breast density, a well-established breast cancer risk factor, (b) assessment of a woman\u27s inherent breast cancer risk, and (c) identification of women who are likely to be diagnosed with breast cancers after a negative or routine screen due to masking or the rapid and aggressive growth of a tumor. Lastly, we discuss AI challenges unique to the computational analysis of mammographic imaging as well as future directions for this promising research field. CONCLUSIONS: We provide a useful reference for AI researchers investigating image-based breast cancer risk assessment while indicating key priorities and challenges that, if properly addressed, could accelerate the implementation of AI-assisted risk stratification to future refine and individualize breast cancer screening strategies

    A Multicentric, Single Arm, Prospective, Stratified Clinical Investigation to Confirm MammoWave’s Ability in Breast Lesions Detection

    Get PDF
    Novel techniques, such as microwave imaging, have been implemented in different prototypes and are under clinical validation, especially for breast cancer detection, due to their harmless technology and possible clinical advantages over conventional imaging techniques. In the prospective study presented in this work, we aim to investigate through a multicentric European clinical trial (ClinicalTrials.gov Identifier NCT05300464) the effectiveness of the MammoWave microwave imaging device, which uses a Huygens-principle-based radar algorithm for image reconstruction and comprises dedicated image analysis software. A detailed clinical protocol has been prepared outlining all aspects of this study, which will involve adult females having a radiologist study output obtained using conventional exams (mammography and/or ultrasound and/or magnetic resonance imaging) within the previous month. A maximum number of 600 volunteers will be recruited at three centres in Italy and Spain, where they will be asked to sign an informed consent form prior to the MammoWave scan. Conductivity weighted microwave images, representing the homogeneity of the tissues’ dielectric properties, will be created for each breast, using a conductivity = 0.3 S/m. Subsequently, several microwave image parameters (features) will be used to quantify the images’ non-homogenous behaviour. A selection of these features is expected to allow for distinction between breasts with lesions (either benign or malignant) and those without radiological findings. For all the selected features, we will use Welch’s t-test to verify the statistical significance, using the gold standard output of the radiological study review

    A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation

    Full text link
    [EN] Background and Objective: Breast cancer is the most frequent cancer in women. The Spanish healthcare network established population-based screening programs in all Autonomous Communities, where mammograms of asymptomatic women are taken with early diagnosis purposes. Breast density assessed from digital mammograms is a biomarker known to be related to a higher risk to develop breast cancer. It is thus crucial to provide a reliable method to measure breast density from mammograms. Furthermore the complete automation of this segmentation process is becoming fundamental as the amount of mammograms increases every day. Important challenges are related with the differences in images from different devices and the lack of an objective gold standard. This paper presents a fully automated framework based on deep learning to estimate the breast density. The framework covers breast detection, pectoral muscle exclusion, and fibroglandular tissue segmentation. Methods: A multi-center study, composed of 1785 women whose "for presentation" mammograms were segmented by two experienced radiologists. A total of 4992 of the 6680 mammograms were used as training corpus and the remaining (1688) formed the test corpus. This paper presents a histogram normalization step that smoothed the difference between acquisition, a regression architecture that learned segmentation parameters as intrinsic image features and a loss function based on the DICE score. Results: The results obtained indicate that the level of concordance (DICE score) reached by the two radiologists (0.77) was also achieved by the automated framework when it was compared to the closest breast segmentation from the radiologists. For the acquired with the highest quality device, the DICE score per acquisition device reached 0.84, while the concordance between radiologists was 0.76. Conclusions: An automatic breast density estimator based on deep learning exhibits similar performance when compared with two experienced radiologists. It suggests that this system could be used to support radiologists to ease its work.This work was partially funded by Generalitat Valenciana through I+D IVACE (Valencian Institute of Business Competitiviness) and GVA (European Regional Development Fund) supports under the project IMAMCN/2019/1, and by Carlos III Institute of Health under the project DTS15/00080.Perez-Benito, FJ.; Signol, F.; Perez-Cortes, J.; Fuster Bagetto, A.; Pollan, M.; Pérez-Gómez, B.; Salas-Trejo, D.... (2020). A deep learning system to obtain the optimal parameters for a threshold-based breast and dense tissue segmentation. Computer Methods and Programs in Biomedicine. 195:123-132. https://doi.org/10.1016/j.cmpb.2020.105668S123132195Kuhl, C. K. (2015). The Changing World of Breast Cancer. Investigative Radiology, 50(9), 615-628. doi:10.1097/rli.0000000000000166Boyd, N. F., Rommens, J. M., Vogt, K., Lee, V., Hopper, J. L., Yaffe, M. J., & Paterson, A. D. (2005). Mammographic breast density as an intermediate phenotype for breast cancer. The Lancet Oncology, 6(10), 798-808. doi:10.1016/s1470-2045(05)70390-9Assi, V., Warwick, J., Cuzick, J., & Duffy, S. W. (2011). Clinical and epidemiological issues in mammographic density. Nature Reviews Clinical Oncology, 9(1), 33-40. doi:10.1038/nrclinonc.2011.173Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E. R. E., & Zwiggelaar, R. (2008). A Novel Breast Tissue Density Classification Methodology. IEEE Transactions on Information Technology in Biomedicine, 12(1), 55-65. doi:10.1109/titb.2007.903514Pérez-Benito, F. J., Signol, F., Pérez-Cortés, J.-C., Pollán, M., Pérez-Gómez, B., Salas-Trejo, D., … LLobet, R. (2019). Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts. Computer Methods and Programs in Biomedicine, 177, 123-132. doi:10.1016/j.cmpb.2019.05.022Ciatto, S., Houssami, N., Apruzzese, A., Bassetti, E., Brancato, B., Carozzi, F., … Scorsolini, A. (2005). Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. The Breast, 14(4), 269-275. doi:10.1016/j.breast.2004.12.004Skaane, P. (2009). Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: Updated review. Acta Radiologica, 50(1), 3-14. doi:10.1080/02841850802563269Van der Waal, D., den Heeten, G. J., Pijnappel, R. M., Schuur, K. H., Timmers, J. M. H., Verbeek, A. L. M., & Broeders, M. J. M. (2015). Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting. PLOS ONE, 10(9), e0136667. doi:10.1371/journal.pone.0136667Kim, S. H., Lee, E. H., Jun, J. K., Kim, Y. M., Chang, Y.-W., … Lee, J. H. (2019). Interpretive Performance and Inter-Observer Agreement on Digital Mammography Test Sets. Korean Journal of Radiology, 20(2), 218. doi:10.3348/kjr.2018.0193Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246. doi:10.1093/bib/bbx044LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., … Kingsbury, B. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6), 82-97. doi:10.1109/msp.2012.2205597Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119, 3-11. doi:10.1016/j.patrec.2018.02.010Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500(7461), 168-174. doi:10.1038/nature12346Lee, K., Turner, N., Macrina, T., Wu, J., Lu, R., & Seung, H. S. (2019). Convolutional nets for reconstructing neural circuits from brain images acquired by serial section electron microscopy. Current Opinion in Neurobiology, 55, 188-198. doi:10.1016/j.conb.2019.04.001Leung, M. K. K., Xiong, H. Y., Lee, L. J., & Frey, B. J. (2014). Deep learning of the tissue-regulated splicing code. Bioinformatics, 30(12), i121-i129. doi:10.1093/bioinformatics/btu277Zhou, J., Park, C. Y., Theesfeld, C. L., Wong, A. K., Yuan, Y., Scheckel, C., … Troyanskaya, O. G. (2019). Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nature Genetics, 51(6), 973-980. doi:10.1038/s41588-019-0420-0Kallenberg, M., Petersen, K., Nielsen, M., Ng, A. Y., Diao, P., Igel, C., … Lillholm, M. (2016). Unsupervised Deep Learning Applied to Breast Density Segmentation and Mammographic Risk Scoring. IEEE Transactions on Medical Imaging, 35(5), 1322-1331. doi:10.1109/tmi.2016.2532122Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. doi:10.1109/5.726791P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat: integrated recognition, localization and detection using convolutional networks, arXiv:1312.6229 (2013).Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297-302. doi:10.2307/1932409Pollán, M., Llobet, R., Miranda-García, J., Antón, J., Casals, M., Martínez, I., … Salas-Trejo, D. (2013). Validation of DM-Scan, a computer-assisted tool to assess mammographic density in full-field digital mammograms. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-242Llobet, R., Pollán, M., Antón, J., Miranda-García, J., Casals, M., Martínez, I., … Pérez-Cortés, J.-C. (2014). Semi-automated and fully automated mammographic density measurement and breast cancer risk prediction. Computer Methods and Programs in Biomedicine, 116(2), 105-115. doi:10.1016/j.cmpb.2014.01.021He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., & Chao, Y. (2017). The connected-component labeling problem: A review of state-of-the-art algorithms. Pattern Recognition, 70, 25-43. doi:10.1016/j.patcog.2017.04.018Wu, K., Otoo, E., & Suzuki, K. (2008). Optimizing two-pass connected-component labeling algorithms. Pattern Analysis and Applications, 12(2), 117-135. doi:10.1007/s10044-008-0109-yShen, R., Yan, K., Xiao, F., Chang, J., Jiang, C., & Zhou, K. (2018). Automatic Pectoral Muscle Region Segmentation in Mammograms Using Genetic Algorithm and Morphological Selection. Journal of Digital Imaging, 31(5), 680-691. doi:10.1007/s10278-018-0068-9Yin, K., Yan, S., Song, C., & Zheng, B. (2018). A robust method for segmenting pectoral muscle in mediolateral oblique (MLO) mammograms. International Journal of Computer Assisted Radiology and Surgery, 14(2), 237-248. doi:10.1007/s11548-018-1867-7James, J. . (2004). The current status of digital mammography. Clinical Radiology, 59(1), 1-10. doi:10.1016/j.crad.2003.08.011Sáez, C., Robles, M., & García-Gómez, J. M. (2016). Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statistical Methods in Medical Research, 26(1), 312-336. doi:10.1177/0962280214545122Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. doi:10.1016/j.patrec.2009.09.011Lee, J., & Nishikawa, R. M. (2018). Automated mammographic breast density estimation using a fully convolutional network. Medical Physics, 45(3), 1178-1190. doi:10.1002/mp.12763D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 (2014).Lehman, C. D., Yala, A., Schuster, T., Dontchos, B., Bahl, M., Swanson, K., & Barzilay, R. (2019). Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation. Radiology, 290(1), 52-58. doi:10.1148/radiol.2018180694Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828. doi:10.1109/tpami.2013.50Wu, G., Kim, M., Wang, Q., Munsell, B. C., & Shen, D. (2016). Scalable High-Performance Image Registration Framework by Unsupervised Deep Feature Representations Learning. IEEE Transactions on Biomedical Engineering, 63(7), 1505-1516. doi:10.1109/tbme.2015.2496253T.P. Matthews, S. Singh, B. Mombourquette, J. Su, M.P. Shah, S. Pedemonte, A. Long, D. Maffit, J. Gurney, R.M. Hoil, et al., A multi-site study of a breast density deep learning model for full-field digital mammography and digital breast tomosynthesis exams, arXiv:2001.08383 (2020)

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    Improvement of the portuguese breast cancer screening through process modelling (BPM)

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceBreast cancer is a malignant epithelial neoplasm with high incidence and mortality in women. Focusing the clinical performance on screening processes has proven to be the way to improve morbidity and mortality statistics of this recognized public health problem. Business process management (BPM) is a management field that improves and analyzes business processes according to organizations’ strategies. BPM may help manage patient and information flow, improving waiting time in healthcare delivery while integrating healthcare processes with IT. The early diagnosis of breast cancer is of great importance since it will enable more conservative treatments and a longer disease-free survival. Organized oncology screenings programs, with all elements properly prepared, revealed to be more efficient than the opportunistic screenings. The aim of this study is to identify and model BPM processes for the healthcare sector, namely, for the breast cancer screening in Portugal. To achieve this goal, the main processes were identified and new frameworks were proposed and validated through individual interviews with experts. In this study was concluded that BPM techniques can be applied to the healthcare. Through the application of these techniques it was possible to identify the main issues within the organized breast cancer screening and suggest changes to it. These changes focus on reducing the time of the process, improving its efficiency and offering greater support to the health user
    • …
    corecore