5,456 research outputs found

    Разработка программного комплекса для оценки и реабилитации двигательных расстройств при поражении центральной нервной системы

    Get PDF
    Объектом исследования в данной работе является влияние дополненной реальности на двигательные расстройства больного с двигательной дисфункцией. Целью является разработка программного комплекса для реабилитации двигательных нарушений у больных. Актуальность работы с уверенностью можно назвать высокой, так как в ней используются последние достижения кибер-индустрии (очки дополненной реальности, инфракрасный датчик движения), также работа может использоваться в качестве базы для других программ. Область применения в медицине является - область неврологии. Медицина одна из самых актуальных частей производства в мире где всегда требуются улучшения и приветствуется новаторство для расширения границ восприятия.The object of the study in this work is the effect of extended reality on the motor disorders of a patient with motor dysfunction. The goal is to develop a software package for the rehabilitation of motor disorders in patients. The relevance of work with confidence can be called high, because it uses the latest achievements of the cyber industry (glasses augmented reality, infrared motion sensor), and the work can also be used as a basis for other programs. The field of application in medicine is the field of neurology. Medicine is one of the most important parts of production in the world, where improvements are always required, and innovations are encouraged to expand the boundaries of perceptio

    Разработка программного комплекса для оценки и реабилитации двигательных расстройств при поражении центральной нервной системы

    Get PDF
    Объектом исследования в данной работе является влияние дополненной реальности на двигательные расстройства больного с двигательной дисфункцией. Целью является разработка программного комплекса для реабилитации двигательных нарушений у больных. Актуальность работы с уверенностью можно назвать высокой, так как в ней используются последние достижения кибер-индустрии (очки дополненной реальности, инфракрасный датчик движения), также работа может использоваться в качестве базы для других программ. Область применения в медицине является - область неврологии. Медицина одна из самых актуальных частей производства в мире где всегда требуются улучшения и приветствуется новаторство для расширения границ восприятия.The object of the study in this work is the effect of extended reality on the motor disorders of a patient with motor dysfunction. The goal is to develop a software package for the rehabilitation of motor disorders in patients. The relevance of work with confidence can be called high, because it uses the latest achievements of the cyber industry (glasses augmented reality, infrared motion sensor), and the work can also be used as a basis for other programs. The field of application in medicine is the field of neurology. Medicine is one of the most important parts of production in the world, where improvements are always required, and innovations are encouraged to expand the boundaries of perceptio

    Augmented reality system with application in physical rehabilitation

    Get PDF
    The aging phenomenon causes increased physiotherapy services requirements, with increased costs associated with long rehabilitation periods. Traditional rehabilitation methods rely on the subjective assessment of physiotherapists without supported training data. To overcome the shortcoming of traditional rehabilitation method and improve the efficiency of rehabilitation, AR (Augmented Reality) which represents a promissory technology that provides an immersive interaction with real and virtual objects is used. The AR devices may assure the capture body posture and scan the real environment that conducted to a growing number of AR applications focused on physical rehabilitation. In this MSc thesis, an AR platform used to materialize a physical rehabilitation plan for stroke patients is presented. Gait training is a significant part of physical rehabilitation for stroke patients. AR represents a promissory solution for training assessment providing information to the patients and physiotherapists about exercises to be done and the reached results. As part of MSc work an iOS application was developed in unity 3D platform. This application immersing patients in a mixed environment that combine real-world and virtual objects. The human computer interface is materialized by an iPhone as head-mounted 3D display and a set of wireless sensors for physiological and motion parameters measurement. The position and velocity of the patient are recorded by a smart carpet that includes capacitive sensors connected to a computation unit characterized by Wi-Fi communication capabilities. AR training scenario and the corresponding experimental results are part of the thesis.O envelhecimento causa um aumento das necessidades dos serviços de fisioterapia, com aumento dos custos associados a longos períodos de reabilitação. Os métodos tradicionais de reabilitação dependem da avaliação subjetiva de fisioterapeutas sem registo automatizado de dados de treino. Com o principal objetivo de superar os problemas do método tradicional e melhorar a eficiência da reabilitação, é utilizada a RA (Realidade Aumentada), que representa uma tecnologia promissora, que fornece uma interação imersiva com objetos reais e virtuais. Os dispositivos de RA são capazes de garantir uma postura correta do corpo de capturar e verificar o ambiente real, o que levou a um número crescente de aplicações de RA focados na reabilitação física. Neste projeto, é apresentada uma plataforma de RA, utilizada para materializar um plano de reabilitação física para pacientes que sofreram AVC. O treino de marcha é uma parte significativa da reabilitação física para pacientes com AVC. A RA apresenta-se como uma solução promissora para a avaliação do treino, fornecendo informações aos pacientes e aos profissionais de fisioterapia sobre os exercícios a serem realizados e os resultados alcançados. Como parte deste projeto, uma aplicação iOS foi desenvolvida na plataforma Unity 3D. Esta aplicação fornece aos pacientes um ambiente imersivo que combina objetos reais e virtuais. A interface de RA é materializada por um iPhone montado num suporte de cabeça do utilizador, assim como um conjunto de sensores sem fios para medição de parâmetros fisiológicos e de movimento. A posição e a velocidade do paciente são registadas por um tapete inteligente que inclui sensores capacitivos conectados a uma unidade de computação, caracterizada por comunicação via Wi-Fi. O cenário de treino em RA e os resultados experimentais correspondentes fazem parte desta dissertação

    Biosignal and context monitoring: Distributed multimedia applications of body area networks in healthcare

    Get PDF
    We are investigating the use of Body Area Networks (BANs), wearable sensors and wireless communications for measuring, processing, transmission, interpretation and display of biosignals. The goal is to provide telemonitoring and teletreatment services for patients. The remote health professional can view a multimedia display which includes graphical and numerical representation of patients’ biosignals. Addition of feedback-control enables teletreatment services; teletreatment can be delivered to the patient via multiple modalities including tactile, text, auditory and visual. We describe the health BAN and a generic mobile health service platform and two context aware applications. The epilepsy application illustrates processing and interpretation of multi-source, multimedia BAN data. The chronic pain application illustrates multi-modal feedback and treatment, with patients able to view their own biosignals on their handheld device

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Recent developments in biofeedback for neuromotor rehabilitation

    Get PDF
    The original use of biofeedback to train single muscle activity in static positions or movement unrelated to function did not correlate well to motor function improvements in patients with central nervous system injuries. The concept of task-oriented repetitive training suggests that biofeedback therapy should be delivered during functionally related dynamic movement to optimize motor function improvement. Current, advanced technologies facilitate the design of novel biofeedback systems that possess diverse parameters, advanced cue display, and sophisticated control systems for use in task-oriented biofeedback. In light of these advancements, this article: (1) reviews early biofeedback studies and their conclusions; (2) presents recent developments in biofeedback technologies and their applications to task-oriented biofeedback interventions; and (3) discusses considerations regarding the therapeutic system design and the clinical application of task-oriented biofeedback therapy. This review should provide a framework to further broaden the application of task-oriented biofeedback therapy in neuromotor rehabilitation
    corecore