4,877 research outputs found

    An academic review: applications of data mining techniques in finance industry

    Get PDF
    With the development of Internet techniques, data volumes are doubling every two years, faster than predicted by Moore’s Law. Big Data Analytics becomes particularly important for enterprise business. Modern computational technologies will provide effective tools to help understand hugely accumulated data and leverage this information to get insights into the finance industry. In order to get actionable insights into the business, data has become most valuable asset of financial organisations, as there are no physical products in finance industry to manufacture. This is where data mining techniques come to their rescue by allowing access to the right information at the right time. These techniques are used by the finance industry in various areas such as fraud detection, intelligent forecasting, credit rating, loan management, customer profiling, money laundering, marketing and prediction of price movements to name a few. This work aims to survey the research on data mining techniques applied to the finance industry from 2010 to 2015.The review finds that Stock prediction and Credit rating have received most attention of researchers, compared to Loan prediction, Money Laundering and Time Series prediction. Due to the dynamics, uncertainty and variety of data, nonlinear mapping techniques have been deeply studied than linear techniques. Also it has been proved that hybrid methods are more accurate in prediction, closely followed by Neural Network technique. This survey could provide a clue of applications of data mining techniques for finance industry, and a summary of methodologies for researchers in this area. Especially, it could provide a good vision of Data Mining Techniques in computational finance for beginners who want to work in the field of computational finance

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Detection of Lying Electrical Vehicles in Charging Coordination Application Using Deep Learning

    Full text link
    The simultaneous charging of many electric vehicles (EVs) stresses the distribution system and may cause grid instability in severe cases. The best way to avoid this problem is by charging coordination. The idea is that the EVs should report data (such as state-of-charge (SoC) of the battery) to run a mechanism to prioritize the charging requests and select the EVs that should charge during this time slot and defer other requests to future time slots. However, EVs may lie and send false data to receive high charging priority illegally. In this paper, we first study this attack to evaluate the gains of the lying EVs and how their behavior impacts the honest EVs and the performance of charging coordination mechanism. Our evaluations indicate that lying EVs have a greater chance to get charged comparing to honest EVs and they degrade the performance of the charging coordination mechanism. Then, an anomaly based detector that is using deep neural networks (DNN) is devised to identify the lying EVs. To do that, we first create an honest dataset for charging coordination application using real driving traces and information revealed by EV manufacturers, and then we also propose a number of attacks to create malicious data. We trained and evaluated two models, which are the multi-layer perceptron (MLP) and the gated recurrent unit (GRU) using this dataset and the GRU detector gives better results. Our evaluations indicate that our detector can detect lying EVs with high accuracy and low false positive rate

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Rails Quality Data Modelling via Machine Learning-Based Paradigms

    Get PDF

    The intersection of evolutionary computation and explainable AI.

    Get PDF
    In the past decade, Explainable Artificial Intelligence (XAI) has attracted a great interest in the research community, motivated by the need for explanations in critical AI applications. Some recent advances in XAI are based on Evolutionary Computation (EC) techniques, such as Genetic Programming. We call this trend EC for XAI. We argue that the full potential of EC methods has not been fully exploited yet in XAI, and call the community for future efforts in this field. Likewise, we find that there is a growing concern in EC regarding the explanation of population-based methods, i.e., their search process and outcomes. While some attempts have been done in this direction (although, in most cases, those are not explicitly put in the context of XAI), we believe that there are still several research opportunities and open research questions that, in principle, may promote a safer and broader adoption of EC in real-world applications. We call this trend XAI within EC. In this position paper, we briefly overview the main results in the two above trends, and suggest that the EC community may play a major role in the achievement of XAI
    • …
    corecore