947 research outputs found

    Grammatical evolution-based ensembles for algorithmic trading

    Get PDF
    The literature on trading algorithms based on Grammatical Evolution commonly presents solutions that rely on static approaches. Given the prevalence of structural change in financial time series, that implies that the rules might have to be updated at predefined time intervals. We introduce an alternative solution based on an ensemble of models which are trained using a sliding window. The structure of the ensemble combines the flexibility required to adapt to structural changes with the need to control for the excessive transaction costs associated with over-trading. The performance of the algorithm is benchmarked against five different comparable strategies that include the traditional static approach, the generation of trading rules that are used for single time period and are subsequently discarded, and three alternatives based on ensembles with different voting schemes. The experimental results, based on market data, show that the suggested approach offers very competitive results against comparable solutions and highlight the importance of containing transaction costs.The authors would like to acknowledge the nancial support of the Spanish Ministry of Science, Innovation and Universities under project PGC2018-646 096849-B-I00 (MCFin)

    Evolutionary computation for trading systems

    Get PDF
    2007/2008Evolutionary computations, also called evolutionary algorithms, consist of several heuristics, which are able to solve optimization tasks by imitating some aspects of natural evolution. They may use different levels of abstraction, but they are always working on populations of possible solutions for a given task. The basic idea is that if only those individuals of a population which meet a certain selection criteria reproduce, while the remaining individuals die, the population will converge to those individuals that best meet the selection criteria. If imperfect reproduction is added the population can begin to explore the search space and will move to individuals that have an increased selection probability and that hand down this property to their descendants. These population dynamics follow the basic rule of the Darwinian evolution theory, which can be described in short as the “survival of the fittest”. Although evolutionary computations belong to a relative new research area, from a computational perspective they have already showed some promising features such as: • evolutionary methods reveal a remarkable balance between efficiency and efficacy; • evolutionary computations are well suited for parameter optimisation; • this type of algorithms allows a wide variety of extensions and constraints that cannot be provided in traditional methods; • evolutionary methods are easily combined with other optimization techniques and can also be extended to multi-objective optimization. From an economic perspective, these methods appear to be particularly well suited for a wide range of possible financial applications, in particular in this thesis I study evolutionary algorithms • for time series prediction; • to generate trading rules; • for portfolio selection. It is commonly believed that asset prices are not random, but are permeated by complex interrelations that often translate in assets mispricing and may give rise to potentially profitable opportunities. Classical financial approaches, such as dividend discount models or even capital asset pricing theories, are not able to capture these market complexities. Thus, in the last decades, researchers have employed intensive econometric and statistical modeling that examine the effects of a multitude of variables, such as price- earnings ratios, dividend yields, interest rate spreads and changes in foreign exchange rates, on a broad and variegated range of stocks at the same time. However, these models often result in complex functional forms difficult to manage or interpret and, in the worst case, are solely able to fit a given time series but are useless to predict it. Parallelly to quantitative approaches, other researchers have focused on the impact of investor psychology (in particular, herding and overreaction) and on the consequences of considering informed signals from management and analysts, such as share repurchases and analyst recommendations. These theories are guided by intuition and experience, and thus are difficult to be translated into a mathematical environment. Hence, the necessity to combine together these point of views in order to develop models that examine simultaneously hundreds of variables, including qualitative informations, and that have user friendly representations, is urged. To this end, the thesis focuses on the study of methodologies that satisfy these requirements by integrating economic insights, derived from academic and professional knowledge, and evolutionary computations. The main task of this work is to provide efficient algorithms based on the evolutionary paradigm of biological systems in order to compute optimal trading strategies for various profit objectives under economic and statistical constraints. The motivations for constructing such optimal strategies are: i) the necessity to overcome data-snooping and supervisorship bias in order to learn to predict good trading opportunities by using market and/or technical indicators as features on which to base the forecasting; ii) the feasibility of using these rules as benchmark for real trading systems; iii) the capability of ranking quantitatively various markets with respect to their profitability according to a given criterion, thus making possible portfolio allocations. More precisely, I present two algorithms that use artificial expert trading systems to predict financial time series, and a procedure to generate integrated neutral strategies for active portfolio management. The first algorithm is an automated procedure that simultaneously selects variables and detect outliers in a dynamic linear model using information criteria as objective functions and diagnostic tests as constraints for the distributional properties of errors. The novelties are the automatic implementation of econometric conditions in the model selection step, making possible a better exploration of the solution space on one hand, and the use of evolutionary computations to efficiently generate a reduction procedure from a very large number of independent variables on the other hand. In the second algorithm, the novelty is given by the definition of evolutionary learning in financial terms and its use in a multi-objective genetic algorithm in order to generate technical trading systems. The last tool is based on a trading strategy on six assets, where future movements of each variable are obtained by an evolutionary procedure that integrates various types of financial variables. The contribution is given by the introduction of a genetic algorithm to optimize trading signals parameters and the way in which different informations are represented and collected. In order to compare the contribution of this work to “classical” techniques and theories, the thesis is divided into three parts. The first part, titled Background, collects Chapters 2 and 3. Its purpose is to provide an introduction to search/optimization evolutionary techniques on one hand, and to the theories that relate the predictability in financial markets with the concept of efficiency proposed over time by scholars on the other hand. More precisely, Chapter 2 introduces the basic concepts and major areas of evolutionary computation. It presents a brief history of three major types of evolutionary algorithms, i.e. evolution strategies, evolutionary programming and genetic algorithms, and points out similarities and differences among them. Moreover it gives an overview of genetic algorithms and describes classical and genetic multi-objective optimization techniques. Chapter 3 first presents an overview of the literature on the predictability of financial time series. In particular, the extent to which the efficiency paradigm is affected by the introduction of new theories, such as behavioral finance, is described in order to justify the market forecasting methodologies developed by practitioners and academics in the last decades. Then, a description of the econometric and financial techniques that will be used in conjunction with evolutionary algorithms in the successive chapters is provided. Special attention is paid to economic implications, in order to highlight merits and shortcomings from a practitioner perspective. The second part of the thesis, titled Trading Systems, is devoted to the description of two procedures I have developed in order to generate artificial trading strategies on the basis of evolutionary algorithms, and it groups Chapters 4 and 5. In particular, chapter 4 presents a genetic algorithm for variable selection by minimizing the error in a multiple regression model. Measures of errors such as ME, RMSE, MAE, Theil’s inequality coefficient and CDC are analyzed choosing models based on AIC, BIC, ICOMP and similar criteria. Two components of penalty functions are taken in analysis- level of significance and Durbin Watson statistics. Asymptotic properties of functions are tested on several financial variables including stocks, bonds, returns, composite prices indices from the US and the EU economies. Variables with outliers that distort the efficiency and consistency of estimators are removed to solve masking and smearing problems that they may cause in estimations. Two examples complete the chapter. In both cases, models are designed to produce short-term forecasts for the excess returns of the MSCI Europe Energy sector on the MSCI Europe index and a recursive estimation- window is used to shed light on their predictability performances. In the first application the data-set is obtained by a reduction procedure from a very large number of leading macro indicators and financial variables stacked at various lags, while in the second the complete set of 1-month lagged variables is considered. Results show a promising capability to predict excess sector returns through the selection, using the proposed methodology, of most valuable predictors. In Chapter 5 the paradigm of evolutionary learning is defined and applied in the context of technical trading rules for stock timing. A new genetic algorithm is developed by integrating statistical learning methods and bootstrap to a multi-objective non dominated sorting algorithm with variable string length, making possible to evaluate statistical and economic criteria at the same time. Subsequently, the chapter discusses a practical case, represented by a simple trading strategy where total funds are invested in either the S&P 500 Composite Index or in 3-month Treasury Bills. In this application, the most informative technical indicators are selected from a set of almost 5000 signals by the algorithm. Successively, these signals are combined into a unique trading signal by a learning method. I test the expert weighting solution obtained by the plurality voting committee, the Bayesian model averaging and Boosting procedures with data from the the S&P 500 Composite Index, in three market phases, up-trend, down- trend and sideways-movements, covering the period 2000–2006. In the third part, titled Portfolio Selection, I explain how portfolio optimization models may be constructed on the basis of evolutionary algorithms and on the signals produced by artificial trading systems. First, market neutral strategies from an economic point of view are introduced, highlighting their risks and benefits and focusing on their quantitative formulation. Then, a description of the GA-Integrated Neutral tool, a MATLAB set of functions based on genetic algorithms for active portfolio management, is given. The algorithm specializes in the parameter optimization of trading signals for an integrated market neutral strategy. The chapter concludes showing an application of the tool as a support to decisions in the Absolute Return Interest Rate Strategies sub-fund of Generali Investments.Gli “algoritmi evolutivi”, noti anche come “evolutionary computations” comprendono varie tecniche di ottimizzazione per la risoluzione di problemi, mediante alcuni aspetti suggeriti dall’evoluzione naturale. Tali metodologie sono accomunate dal fatto che non considerano un’unica soluzione alla volta, bens`ı trattano intere popolazioni di possibili soluzioni per un dato problema. L’idea sottostante `e che, se un algoritmo fa evolvere solamente gli individui di una data popolazione che soddisfano a un certo criterio di selezione, e lascia morire i restanti, la popolazione converger`a agli individui che meglio soddisfano il criterio di selezione. Con una selezione non ottimale, cio`e una che ammette pure soluzioni sub-ottimali, la popolazione rappresenter` a meglio l’intero spazio di ricerca e sar`a in grado di individuare in modo pi`u consistente gli individui migliori da far evolvere. Queste dinamiche interne alle popolazioni seguono i principi Darwiniani dell’evoluzione, che si possono sinteticamente riassumere nella dicitura “la sopravvivenza del più adatto”. Sebbene gli algoritmi evolutivi siano un’area di ricerca relativamente nuova, dal punto di vista computazionale hanno dimostrato alcune caratteristiche interessanti fra cui le seguenti: • permettono un notevole equilibrio tra efficienza ed efficacia; • sono particolarmente indicati per la configurazione dei parametri in problemi di ottimizzazione; • consentono una flessibilit`a nella definizione matematica dei problemi e dei vincoli che non si trova nei metodi tradizionali; • possono facilmente essere integrati con altre tecniche di ottimizzazione ed essere essere modificati per risolvere problemi multi-obiettivo. Dal un punto di vista economico, l’applicazione di queste procedure pu`o risultare utile specialmente in campo finanziario. In particolare, nella mia tesi ho studiato degli algoritmi evolutivi per • la previsione di serie storiche finanziarie; • la costruzione di regole di trading; • la selezione di portafogli. Da un punto di vista pi`u ampio, lo scopo di questa ricerca `e dunque l’analisi dell’evoluzione e della complessit`a dei mercati finanziari. In tal senso, dal momento che i prezzi non seguono andamenti puramente casuali, ma sono governati da un insieme molto articolato di eventi correlati, i modelli e le teorie classiche, come i dividend discount model e le varie capital asset pricing theories, non sono pi`u sufficienti per determinare potenziali opportunit`a di profitto. A tal fine, negli ultimi decenni, alcuni ricercatori hanno sviluppato una vasta gamma di modelli econometrici e statistici in grado di esaminare contemporaneamente le relazioni e gli effetti di centinaia di variabili, come ad esempio, price-earnings ratios, dividendi, differenziali fra tassi di interesse e variazioni dei tassi di cambio, per una vasta gamma di assets. Comunque, questo approccio, che fa largo impiego di strumenti di calcolo, spesso porta a dei modelli troppo complicati per essere gestiti o interpretati, e, nel peggiore dei casi, pur essendo ottimi per descrivere situazioni passate, risultano inutili per fare previsioni. Parallelamente a questi approcci quantitativi, si `e manifestato un grande interesse sulla psicologia degli investitori e sulle conseguenze derivanti dalle opinioni di esperti e analisti nelle dinamiche del mercato. Questi studi sono difficilmente traducibili in modelli matematici e si basano principalmente sull’intuizione e sull’esperienza. Da qui la necessit` a di combinare insieme questi due punti di vista, al fine di sviluppare modelli che siano in grado da una parte di trattare contemporaneamente un elevato numero di variabili in modo efficiente e, dall’altra, di incorporare informazioni e opinioni qualitative. La tesi affronta queste tematiche integrando le conoscenze economiche, sia accademiche che professionali, con gli algoritmi evolutivi. Pi`u pecisamente, il principale obiettivo di questo lavoro `e lo sviluppo di algoritmi efficienti basati sul paradigma dell’evoluzione dei sistemi biologici al fine di determinare strategie di trading ottimali in termini di profitto e di vincoli economici e statistici. Le ragioni che motivano lo studio di tali strategie ottimali sono: i) la necessit`a di risolvere i problemi di data-snooping e supervivorship bias al fine di ottenere regole di investimento vantaggiose utilizzando indicatori di mercato e/o tecnici per la previsione; ii) la possibilità di impiegare queste regole come benchmark per sistemi di trading reali; iii) la capacit`a di individuare gli asset pi`u vantaggiosi in termini di profitto, o di altri criteri, rendendo possibile una migliore allocazione di risorse nei portafogli. In particolare, nella tesi descrivo due algoritmi che impiegano sistemi di trading artificiali per predire serie storiche finanziarie e una procedura di calcolo per strategie integrate neutral market per la gestione attiva di portafogli. Il primo algoritmo `e una procedura automatica che seleziona le variabili e simultaneamente determina gli outlier in un modello dinamico lineare utilizzando criteri informazionali come funzioni obiettivo e test diagnostici come vincoli per le caratteristiche delle distribuzioni degli errori. Le novit`a del metodo sono da una parte l’implementazione automatica di condizioni econometriche nella fase di selezione, consentendo una migliore analisi dello EVOLUTIONARY COMPUTATIONS FOR TRADING SYSTEMS 3 spazio delle soluzioni, e dall’altra parte, l’introduzione di una procedura di riduzione evolutiva capace di riconoscere in modo efficiente le variabili pi`u informative. Nel secondo algoritmo, le novità sono costituite dalla definizione dell’apprendimento evolutivo in termini finanziari e dall’applicazione di un algoritmo genetico multi-obiettivo per la costruzione di sistemi di trading basati su indicatori tecnici. L’ultimo metodo proposto si basa su una strategia di trading su sei assets, in cui le dinamiche future di ciascuna variabile sono ottenute impiegando una procedura evolutiva che integra diverse tipologie di variabili finanziarie. Il contributo è dato dall’impiego di un algoritmo genetico per ottimizzare i parametri negli indicatori tecnici e dal modo in cui le differenti informazioni sono presentate e collegate. La tesi `e organizzata in tre parti. La prima parte, intitolata Background, comprende i Capitoli 2 e 3, ed è intesa a fornire un’introduzione alle tecniche di ricerca/ottimizzazione su base evolutiva da una parte, e alle teorie che si occupano di efficienza e prevedibilit`a dei mercati finanziari dall’altra. Più precisamente, il Capitolo 2 introduce i concetti base e i maggiori campi di studio della computazione evolutiva. In tal senso, si dà una breve presentazione storica di tre dei maggiori tipi di algoritmi evolutivi, ciò e le strategie evolutive, la programmazione evolutiva e gli algoritmi genetici, evidenziandone caratteri comuni e differenze. Il capitolo si chiude con una panoramica sugli algoritmi genetici e sulle tecniche classiche e genetiche di ottimizzazione multi-obiettivo. Il Capitolo 3 affronta nel dettaglio la problematica della prevedibilit`a delle serie storiche finanziarie mettendo in luce, in particolare, quanto il paradigma dell’efficienza sia influenzato dalle pi`u recenti teorie finanziarie, come ad esempio la finanza comportamentale. Lo scopo è quello di dare una giustificazione su basi teoriche per le metodologie di previsione sviluppate nella tesi. Segue una descrizione dei metodi econometrici e di analisi tecnica che nei capitoli successivi verrano impiegati assieme agli algoritmi evolutivi. Una particolare attenzione è data alle implicazioni economiche, al fine di evidenziare i loro meriti e i loro difetti da un punto di vista pratico. La seconda parte, intitolata Trading Systems, raggruppa i Capitoli 4 e 5 ed è dedicata alla descrizione di due procedure che ho sviluppato per generare sistemi di trading artificiali sulla base di algoritmi evolutivi. In particolare, il Capitolo 4 presenta un algortimo genetico per la selezione di variabili attraverso la minimizzazione dell’errore in un modello di regressione multipla. Misure di errore, quali il ME, il RMSE, il MAE, il coefficiente di Theil e il CDC sono analizzate a partire da modelli selezionati sulla scorta di criteri informazionali, come ad esempio AIC, BIC, ICOMP. A livello di vincoli diagnostici, ho considerato una funzione di penalità a due componenti e la statistica di Durbin Watson. Il programma impiega variabili finanziarie di vario tipo, come rendimenti di titoli, bond e prezzi di indici composti ottenuti dalle economie Statunitense ed Europea. Nel caso le serie storiche 4 MASSIMILIANO KAUCIC considerate presentino outliers che distorcono l’efficienza e la consistenza degli stimatori, l’algoritmo `e in grado di individuarle e rimuoverle dalla serie, risolvendo il problema di masking and smearing. Il capitolo si conclude con due applicazioni, in cui i modelli sono progettati per produrre previsioni di breve periodo per l’extra rendimento del settore MSCI Europe Energy sull’indice MSCI Europe e una procedura di tipo recursive estimation-window è utilizzata per evidenziarne le performance previsionali. Nel primo esempio, l’insieme dei dati `e ottenuto estraendo le variabili di interesse da un considerevole numero di indicatori di tipo macro e da variabili finanziarie ritardate rispetto alla variabile dipendente. Nel secondo esempio ho invece considerato l’intero insieme di variabili ritardate di 1 mese. I risultati mostrano una notevole capacità previsiva per l’extra rendimento, individuando gli indicatori maggiormente informativi. Nel Capitolo 5, il concetto di apprendimento evolutivo viene definito ed applicato alla costruzione di regole di trading su indicatori tecnici per lo stock timing. In tal senso, ho sviluppato un algoritmo che integra metodi di apprendimento statistico e di boostrap con un particolare algoritmo multi-obiettivo. La procedura derivante è in grado di valutare contemporaneamente criteri economici e statistici. Per descrivere il suo funzionamento, ho considerato un semplice esempio di trading in cui tutto il capitale è investito in un indice (che nel caso trattato è l’indice S&P 500 Composite) o in un titolo a basso rischio (nell’esempio, i Treasury Bills a 3 mesi). Il segnale finale di trading `e il risultato della selezione degli indicatori tecnici pi`u informativi a partire da un insieme di circa 5000 indicatori e la loro conseguente integrazione mediante un metodo di apprendimento (il plurality voting committee, il bayesian model averaging o il Boosting). L’analisi è stata condotta sull’intervallo temporale dal 2000 al 2006, suddiviso in tre sottoperiodi: il primo rappresenta l’indice in un

    Evolutionary Algorithms Based on Effective Search Space Reduction for Financial Optimization Problems

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 8. 문병로.This thesis presents evolutionary algorithms incorporated with effective search space reduction for financial optimization problems. Typical evolutionary algorithms try to find optimal solutions in the original, or unrestricted search space. However, they can be unsuccessful if the optimal solutions are too complex to be discovered from scratch. This can be relieved by restricting the forms of meaningful solutions or providing the initial population with some promising solutions. To this end, we propose three evolution approaches including modular, grammatical, and seeded evolutions for financial optimization problems. We also adopt local optimizations for fine-tuning the solutions, resulting in hybrid evolutionary algorithms. First, the thesis proposes a modular evolution. In the modular evolution, the possible forms of solutions are statically restricted to certain combinations of module solutions, which reflect more domain knowledge. To preserve the module solutions, we devise modular genetic operators which work on modular search space. The modular genetic operators and statically defined modules help genetic programming focus on highly promising search space. Second, the thesis introduces a grammatical evolution. We restrict the possible forms of solutions in genetic programming by a context-free grammar. In the grammatical evolution, genetic programming works on more extended search space than modular one. Grammatically typed genetic operators are introduced for the grammatical evolution. Compared with the modular evolution, grammatical evolution requires less domain knowledge. Finally, the thesis presents a seeded evolution. Our seeded evolution provides the initial population with partially optimized solutions. The set of genes for the partial optimization is selected in terms of encoding complexity. The partially optimized solutions help genetic algorithm find more promising solutions efficiently. Since they are not too excessively optimized, genetic algorithm is still able to search better solutions. Extensive empirical results are provided using three real-world financial optimization problems: attractive technical pattern discovery, extended attractive technical pattern discovery, and large-scale stock selection. They show that our search space reductions are fairly effective for the problems. By combining the search space reductions with systematic evolutionary algorithm frameworks, we show that evolutionary algorithms can be exploited for realistic profitable trading.1. Introduction 1 1.1 Search Methods 3 1.2 Search Space Reduction 4 1.3 Main Contributions 5 1.4 Organization 7 2. Preliminaries 8 2.1 Evolutionary Algorithms 8 2.1.1 Genetic Algorithm 10 2.1.2 Genetic Programing 11 2.2 Evolutionary Algorithms in Finance 12 2.3 Search Space Reduction 12 2.3.1 Modular Evolution 12 2.3.2 Grammatical Evolution 13 2.3.3 Seeded Evolution 14 2.3.4 Summary 14 2.4 Terminology 15 2.4.1 Technical Pattern and Technical Trading Rule 15 2.4.2 Forecasting Model and Trading Model 16 2.4.3 Portfolio and Rebalancing 17 2.4.4 Data Snooping Bias 17 2.5 Financial Optimization Problems 19 2.5.1 Attractive Technical Pattern Discovery and Its Extension 19 2.5.2 Stock Selection 20 2.6 Issues 21 2.6.1 General Assumptions 21 2.6.2 Performance Measure 22 3. Modular Evolution 23 3.1 Modular Genetic Programming 24 3.2 Hybrid Genetic Programming 28 3.3 Attractive Technical Pattern Discovery 29 3.3.1 Introduction 29 3.3.2 Problem Formulation 31 3.3.3 Modular Search Space 33 3.3.4 Experimental Results 35 3.3.5 Summary 41 4. Grammatical Evolution 44 4.1 Grammatical Type System 45 4.2 Hybrid Genetic Programming 47 4.3 Extended Attractive Technical Pattern Discovery 51 4.3.1 Introduction 51 4.3.2 Problem Formulation 54 4.3.3 Experimental Results 56 4.3.4 Summary 73 5. Seeded Evolution 76 5.1 Heuristic Seeding 77 5.2 Hybrid Genetic Algorithm 78 5.3 Large-Scale Stock Selection 81 5.3.1 Introduction 81 5.3.2 Problem Formulation 83 5.3.3 Ranking with Partitions 85 5.3.4 Experimental Results 87 5.3.5 Summary 96 6. Conclusions 104Docto

    Risk Management using Model Predictive Control

    Get PDF
    Forward planning and risk management are crucial for the success of any system or business dealing with the uncertainties of the real world. Previous approaches have largely assumed that the future will be similar to the past, or used simple forecasting techniques based on ad-hoc models. Improving solutions requires better projection of future events, and necessitates robust forward planning techniques that consider forecasting inaccuracies. This work advocates risk management through optimal control theory, and proposes several techniques to combine it with time-series forecasting. Focusing on applications in foreign exchange (FX) and battery energy storage systems (BESS), the contributions of this thesis are three-fold. First, a short-term risk management system for FX dealers is formulated as a stochastic model predictive control (SMPC) problem in which the optimal risk-cost profiles are obtained through dynamic control of the dealers’ positions on the spot market. Second, grammatical evolution (GE) is used to automate non-linear time-series model selection, validation, and forecasting. Third, a novel measure for evaluating forecasting models, as a part of the predictive model in finite horizon optimal control applications, is proposed. Using both synthetic and historical data, the proposed techniques were validated and benchmarked. It was shown that the stochastic FX risk management system exhibits better risk management on a risk-cost Pareto frontier compared to rule-based hedging strategies, with up to 44.7% lower cost for the same level of risk. Similarly, for a real-world BESS application, it was demonstrated that the GE optimised forecasting models outperformed other prediction models by at least 9%, improving the overall peak shaving capacity of the system to 57.6%

    DATA-DRIVEN ANALYTICAL MODELS FOR IDENTIFICATION AND PREDICTION OF OPPORTUNITIES AND THREATS

    Get PDF
    During the lifecycle of mega engineering projects such as: energy facilities, infrastructure projects, or data centers, executives in charge should take into account the potential opportunities and threats that could affect the execution of such projects. These opportunities and threats can arise from different domains; including for example: geopolitical, economic or financial, and can have an impact on different entities, such as, countries, cities or companies. The goal of this research is to provide a new approach to identify and predict opportunities and threats using large and diverse data sets, and ensemble Long-Short Term Memory (LSTM) neural network models to inform domain specific foresights. In addition to predicting the opportunities and threats, this research proposes new techniques to help decision-makers for deduction and reasoning purposes. The proposed models and results provide structured output to inform the executive decision-making process concerning large engineering projects (LEPs). This research proposes new techniques that not only provide reliable timeseries predictions but uncertainty quantification to help make more informed decisions. The proposed ensemble framework consists of the following components: first, processed domain knowledge is used to extract a set of entity-domain features; second, structured learning based on Dynamic Time Warping (DTW), to learn similarity between sequences and Hierarchical Clustering Analysis (HCA), is used to determine which features are relevant for a given prediction problem; and finally, an automated decision based on the input and structured learning from the DTW-HCA is used to build a training data-set which is fed into a deep LSTM neural network for time-series predictions. A set of deeper ensemble programs are proposed such as Monte Carlo Simulations and Time Label Assignment to offer a controlled setting for assessing the impact of external shocks and a temporal alert system, respectively. The developed model can be used to inform decision makers about the set of opportunities and threats that their entities and assets face as a result of being engaged in an LEP accounting for epistemic uncertainty

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society

    Validation of trading strategies in the foreign exchange

    Get PDF
    The aftermath of the recent financial crisis has caused the narrowing of investment opportunities for foreign exchange (FX) traders and investors. A debate about the profitability of trading strategies in FX has started among practitioners and academic researchers who have wondered whether is still possible to obtain positive excess returns (alpha). In this research I validate a set of trading strategies for FX. Seven experiments are carried out on macroeconomic market factors like trendfollowing, carry and value, separately. The outcome holds that the dissolution of synchronous monetary policies increases the probability of observing trends and carry opportunities in the FX. The failure of the uncovered interest rate parity by the so-called forward rate puzzle and that of the purchase parity power open opportunities for strategies like momentum, carry and value. Carry is not only applicable to spot rates as can also be used to trade FX options. Two experiments are performed to study the consistency of FX option premia and the performance of carry trade for options. For short-dated options, like the weekly ones, carry cannot produce material profits as the error implied by the forward rate is not large enough. Conversely, the premium earned from trading FX call options is a consistent source. A second line of research is dedicated to the analysis of trading strategies for FX highfrequency data. This study consists of implementing machine learning algorithms, like the exponentially-smoothing recurrent neural networks (RNN), to forecast future prices and derive a trading strategy from it. The training of these models appear to be computationally intensive but simpler than that of other neural networks like the long-short-term memory ones (LSTM). The accuracy of the forecast is adequate with no signs of over-fitting. The performance appears to be highly influenced by the presence of intra-day seasonality and jumps. A range of solutions are explored to address such a limitation

    Green Technologies for Production Processes

    Get PDF
    This book focuses on original research works about Green Technologies for Production Processes, including discrete production processes and process production processes, from various aspects that tackle product, process, and system issues in production. The aim is to report the state-of-the-art on relevant research topics and highlight the barriers, challenges, and opportunities we are facing. This book includes 22 research papers and involves energy-saving and waste reduction in production processes, design and manufacturing of green products, low carbon manufacturing and remanufacturing, management and policy for sustainable production, technologies of mitigating CO2 emissions, and other green technologies

    Machine learning assisted optimization with applications to diesel engine optimization with the particle swarm optimization algorithm

    Get PDF
    A novel approach to incorporating Machine Learning into optimization routines is presented. An approach which combines the benefits of ML, optimization, and meta-model searching is developed and tested on a multi-modal test problem; a modified Rastragin\u27s function. An enhanced Particle Swarm Optimization method was derived from the initial testing. Optimization of a diesel engine was carried out using the modified algorithm demonstrating an improvement of 83% compared with the unmodified PSO algorithm. Additionally, an approach to enhancing the training of ML models by leveraging Virtual Sensing as an alternative to standard multi-layer neural networks is presented. Substantial gains were made in the prediction of Particulate matter, reducing the MMSE by 50% and improving the correlation R^2 from 0.84 to 0.98. Improvements were made in models of PM, NOx, HC, CO, and Fuel Consumption using the method, while training times and convergence reliability were simultaneously improved over the traditional approach

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore