11,280 research outputs found

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics

    Impact analysis of crossovers in a multi-objective evolutionary algorithm

    Get PDF
    Multi-objective optimization has become mainstream because several real-world problems are naturally posed as a Multi-objective optimization problems (MOPs) in all fields of engineering and science. Usually MOPs consist of more than two conflicting objective functions and that demand trade-off solutions. Multi-objective evolutionary algorithms (MOEAs) are extremely useful and well-suited for solving MOPs due to population based nature. MOEAs evolve its population of solutions in a natural way and searched for compromise solutions in single simulation run unlike traditional methods. These algorithms make use of various intrinsic search operators in efficient manners. In this paper, we experimentally study the impact of different multiple crossovers in multi-objective evolutionary algorithm based on decomposition (MOEA/D) framework and evaluate its performance over test instances of 2009 IEEE congress on evolutionary computation (CEC?09) developed for MOEAs competition. Based on our carried out experiment, we observe that used variation operators are considered to main source to improve the algorithmic performance of MOEA/D for dealing with CEC?09 complicated test problems

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart
    • …
    corecore