1,891 research outputs found

    IDENTIFYING AND MONITORING THE ROLES OF CAVITATION IN HEATING FROM HIGH-INTENSITY FOCUSED ULTRASOUND

    Get PDF
    For high-intensity focused ultrasound (HIFU) to continue to gain acceptance for cancer treatment it is necessary to understand how the applied ultrasound interacts with gas trapped in the tissue. The presence of bubbles in the target location have been thought to be responsible for shielding the incoming pressure and increasing local heat deposition due to the bubble dynamics. We lack adequate tools for monitoring the cavitation process, due to both limited visualization methods and understanding of the underlying physics. The goal of this project was to elucidate the role of inertial cavitation in HIFU exposures in the hope of applying noise diagnostics to monitor cavitation activity and control HIFU-induced cavitation in a beneficial manner. A number of approaches were taken to understand the relationship between inertial cavitation signals, bubble heating, and bubble shielding in agar-graphite tissue phantoms. Passive cavitation detection (PCD) techniques were employed to detect inertial bubble collapses while the temperature was monitored with an embedded thermocouple. Results indicate that the broadband noise amplitude is correlated to bubble-enhanced heating. Monitoring inertial cavitation at multiple positions throughout the focal region demonstrated that bubble activity increased prefocally as it diminished near the focus. Lowering the HIFU duty cycle had the effect of maintaining a more or less constant cavitation signal, suggesting the shielding effect diminished when the bubbles had a chance to dissolve during the HIFU off-time. Modeling the effect of increasing the ambient temperature showed that bubbles do not collapse as violently at higher temperatures due to increased vapor pressure inside the bubble. Our conclusion is that inertial cavitation heating is less effective at higher temperatures and bubble shielding is involved in shifting energy deposition at the focus. The use of a diagnostic ultrasound imaging system as a PCD array was explored. Filtering out the scattered harmonics from the received RF signals resulted in a spatially- resolved inertial cavitation signal, while the amplitude of the harmonics showed a correlation with temperatures approaching the onset of boiling. The result is a new tool for detecting a broader spectrum of bubble activity and thus enhancing HIFU treatment visualization and feedback.Gordon Center for Subsurface Sensing and Imaging Systems via NSF ERC Award Number EEC-9986821 and the U.S. Army, award number DAMD17-02-2-0014

    Dynamic modeling and fuzzy logic control of a large building HVAC system

    Get PDF
    Energy and cost-efficient management of a building’s thermal properties requires heating, ventilation and air conditioning (HVAC) systems controllers to be working at optimal settings. However, many HVAC systems employ nonlinear time variances to deal with issues that affect the system’s optimal operation. The present work considers an HVAC system at Memorial University’s S. J. Carew Building which has been mathematically modeled using a state space multi-input and multi-output system (MIMO) approach for analyses and control system design. An IDA-ICE (Indoor Climate and Energy) simulation program has been applied for modeling the building, note that the four-story Carew Building includes an air-handling unit (AHU) on every floor. Compared with real data for one year’s (2016) power consumption, the simulated annual power consumption for the building shows good agreement. Based on that data, two scenarios are applied for building the system models. Scenario 1 considers the HVAC system as a single unit with energy consumption (kWh) as inputs and zonal temperature and CO2 concentrations as outputs. By employing the MATLAB system identification toolbox, a MIMO-based system forms the basis for a state space model. In the model for Scenario 1, there are eight main AHU inputs (hot water power usage and power usage) and eight main outputs (return airflow temperature and CO2 levels). The state feedback controller obtains good results for both responses rise time and stability. In Scenario 2, there are four AHUs in total. Each of this scenario’s AHUs features three main inputs (hot water, internal-to-internal air flow, and external-to-internal air flow) and three main outputs (static air pressure, CO2 levels, and temperature). In the first AHU (AHU1), we apply state-of-the-art fuzzy logic controllers (FLCs) to control fan speeds, CO2 concentrations, and temperature in the building in accordance with the flow rates for air and hot water. This strategy represents a novel approach for adapting FLCs by modifying fuzzy rule using the Simulink. The modified system shows improved levels of thermal comfort. The final part of the work presents the design for a supervisor fuzzy logic controller (SFLC) that can be applied to the entire S. J. Carew Building HVAC control. This SFLC features 24 inputs and 12 outputs and employs a state-space model that considers each AHU as an individual system. The SFLC detailed design and system simulation results are presented in this thesis

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 182, July 1978

    Get PDF
    This bibliography lists 165 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1978

    Building-integrated rooftop greenhouses: an energy and environmental assessment in the mediterranean context

    Get PDF
    A sustainable and secure food supply within a low-carbon and resilient infrastructure is encapsulated in several of The United Nations’ 17 sustainable development goals. The integration of urban agriculture in buildings can offer improved efficiencies; in recognition of this, the first south European example of a fully integrated rooftop greenhouse (iRTG) was designed and incorporated into the ICTA-ICP building by the Autonomous University of Barcelona. This design seeks to interchange heat, CO2 and rainwater between the building and its rooftop greenhouse. Average air temperatures for 2015 in the iRTG were 16.5 °C (winter) and 25.79 °C (summer), making the iRTG an ideal growing environment. Using detailed thermophysical fabric properties, 2015 site-specific weather data, exact control strategies and dynamic soil temperatures, the iRTG was modelled in EnergyPlus to assess the performance of an equivalent ‘freestanding’ greenhouse. The validated result shows that the thermal interchange between the iRTG and the ICTA-ICP building has considerable moderating effects on the iRTG’s indoor climate; since average hourly temperatures in an equivalent freestanding greenhouse would have been 4.1 °C colder in winter and 4.4 °C warmer in summer under the 2015 climatic conditions. The simulation results demonstrate that the iRTG case study recycled 43.78 MWh of thermal energy (or 341.93 kWh/m2/yr) from the main building in 2015. Assuming 100% energy conversion efficiency, compared to freestanding greenhouses heated with oil, gas or biomass systems, the iRTG delivered an equivalent carbon savings of 113.8, 82.4 or 5.5 kg CO2(eq)/m2/yr, respectively, and economic savings of 19.63, 15.88 or 17.33 €/m2/yr, respectively. Under similar climatic conditions, this symbiosis between buildings and urban agriculture makes an iRTG an efficient resource-management model and supports the promotion of a new typology or concept of buildings with a nexus or symbiosis between energy efficiency and food production.Postprint (published version
    • …
    corecore