441 research outputs found

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review

    No full text
    International audienceProstate cancer is the second most diagnosed cancer of men all over the world. In the last decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed improving diagnosis.In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systemshave been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field ofresearch for the last ten years. This survey aims to provide a comprehensive review of the state of the art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aidedsystem. We also provide a comparison between studies and a discussion about the potential avenues for future research. In addition, this paper presents a new public online dataset which is made available to theresearch community with the aim of providing a common evaluation framework to overcome some of the current limitations identified in this survey

    A novel NMF-based DWI CAD framework for prostate cancer.

    Get PDF
    In this thesis, a computer aided diagnostic (CAD) framework for detecting prostate cancer in DWI data is proposed. The proposed CAD method consists of two frameworks that use nonnegative matrix factorization (NMF) to learn meaningful features from sets of high-dimensional data. The first technique, is a three dimensional (3D) level-set DWI prostate segmentation algorithm guided by a novel probabilistic speed function. This speed function is driven by the features learned by NMF from 3D appearance, shape, and spatial data. The second technique, is a probabilistic classifier that seeks to label a prostate segmented from DWI data as either alignat, contain cancer, or benign, containing no cancer. This approach uses a NMF-based feature fusion to create a feature space where data classes are clustered. In addition, using DWI data acquired at a wide range of b-values (i.e. magnetic field strengths) is investigated. Experimental analysis indicates that for both of these frameworks, using NMF producing more accurate segmentation and classification results, respectively, and that combining the information from DWI data at several b-values can assist in detecting prostate cancer

    Regmentation: A New View of Image Segmentation and Registration

    Get PDF
    Image segmentation and registration have been the two major areas of research in the medical imaging community for decades and still are. In the context of radiation oncology, segmentation and registration methods are widely used for target structure definition such as prostate or head and neck lymph node areas. In the past two years, 45% of all articles published in the most important medical imaging journals and conferences have presented either segmentation or registration methods. In the literature, both categories are treated rather separately even though they have much in common. Registration techniques are used to solve segmentation tasks (e.g. atlas based methods) and vice versa (e.g. segmentation of structures used in a landmark based registration). This article reviews the literature on image segmentation methods by introducing a novel taxonomy based on the amount of shape knowledge being incorporated in the segmentation process. Based on that, we argue that all global shape prior segmentation methods are identical to image registration methods and that such methods thus cannot be characterized as either image segmentation or registration methods. Therefore we propose a new class of methods that are able solve both segmentation and registration tasks. We call it regmentation. Quantified on a survey of the current state of the art medical imaging literature, it turns out that 25% of the methods are pure registration methods, 46% are pure segmentation methods and 29% are regmentation methods. The new view on image segmentation and registration provides a consistent taxonomy in this context and emphasizes the importance of regmentation in current medical image processing research and radiation oncology image-guided applications

    Contour-Driven Atlas-Based Segmentation

    Get PDF
    We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images
    corecore