5,243 research outputs found

    Blind audio-visual localization and separation via low-rank and sparsity

    Get PDF
    The ability to localize visual objects that are associated with an audio source and at the same time to separate the audio signal is a cornerstone in audio-visual signal-processing applications. However, available methods mainly focus on localizing only the visual objects, without audio separation abilities. Besides that, these methods often rely on either laborious preprocessing steps to segment video frames into semantic regions, or additional supervisions to guide their localization. In this paper, we aim to address the problem of visual source localization and audio separation in an unsupervised manner and avoid all preprocessing or post-processing steps. To this end, we devise a novel structured matrix decomposition method that decomposes the data matrix of each modality as a superposition of three terms: 1) a low-rank matrix capturing the background information; 2) a sparse matrix capturing the correlated components among the two modalities and, hence, uncovering the sound source in visual modality and the associated sound in audio modality; and 3) a third sparse matrix accounting for uncorrelated components, such as distracting objects in visual modality and irrelevant sound in audio modality. The generality of the proposed method is demonstrated by applying it onto three applications, namely: 1) visual localization of a sound source; 2) visually assisted audio separation; and 3) active speaker detection. Experimental results indicate the effectiveness of the proposed method on these application domains

    Intelligent Data Analytics using Deep Learning for Data Science

    Get PDF
    Nowadays, data science stimulates the interest of academics and practitioners because it can assist in the extraction of significant insights from massive amounts of data. From the years 2018 through 2025, the Global Datasphere is expected to rise from 33 Zettabytes to 175 Zettabytes, according to the International Data Corporation. This dissertation proposes an intelligent data analytics framework that uses deep learning to tackle several difficulties when implementing a data science application. These difficulties include dealing with high inter-class similarity, the availability and quality of hand-labeled data, and designing a feasible approach for modeling significant correlations in features gathered from various data sources. The proposed intelligent data analytics framework employs a novel strategy for improving data representation learning by incorporating supplemental data from various sources and structures. First, the research presents a multi-source fusion approach that utilizes confident learning techniques to improve the data quality from many noisy sources. Meta-learning methods based on advanced techniques such as the mixture of experts and differential evolution combine the predictive capacity of individual learners with a gating mechanism, ensuring that only the most trustworthy features or predictions are integrated to train the model. Then, a Multi-Level Convolutional Fusion is presented to train a model on the correspondence between local-global deep feature interactions to identify easily confused samples of different classes. The convolutional fusion is further enhanced with the power of Graph Transformers, aggregating the relevant neighboring features in graph-based input data structures and achieving state-of-the-art performance on a large-scale building damage dataset. Finally, weakly-supervised strategies, noise regularization, and label propagation are proposed to train a model on sparse input labeled data, ensuring the model\u27s robustness to errors and supporting the automatic expansion of the training set. The suggested approaches outperformed competing strategies in effectively training a model on a large-scale dataset of 500k photos, with just about 7% of the images annotated by a human. The proposed framework\u27s capabilities have benefited various data science applications, including fluid dynamics, geometric morphometrics, building damage classification from satellite pictures, disaster scene description, and storm-surge visualization

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    Audio-Visual Egocentric Action Recognition

    Get PDF

    Towards Video Transformers for Automatic Human Analysis

    Full text link
    [eng] With the aim of creating artificial systems capable of mirroring the nuanced understanding and interpretative powers inherent to human cognition, this thesis embarks on an exploration of the intersection between human analysis and Video Transformers. The objective is to harness the potential of Transformers, a promising architectural paradigm, to comprehend the intricacies of human interaction, thus paving the way for the development of empathetic and context-aware intelligent systems. In order to do so, we explore the whole Computer Vision pipeline, from data gathering, to deeply analyzing recent developments, through model design and experimentation. Central to this study is the creation of UDIVA, an expansive multi-modal, multi-view dataset capturing dyadic face-to-face human interactions. Comprising 147 participants across 188 sessions, UDIVA integrates audio-visual recordings, heart-rate measurements, personality assessments, socio- demographic metadata, and conversational transcripts, establishing itself as the largest dataset for dyadic human interaction analysis up to this date. This dataset provides a rich context for probing the capabilities of Transformers within complex environments. In order to validate its utility, as well as to elucidate Transformers' ability to assimilate diverse contextual cues, we focus on addressing the challenge of personality regression within interaction scenarios. We first adapt an existing Video Transformer to handle multiple contextual sources and conduct rigorous experimentation. We empirically observe a progressive enhancement in model performance as more context is added, reinforcing the potential of Transformers to decode intricate human dynamics. Building upon these findings, the Dyadformer emerges as a novel architecture, adept at long-range modeling of dyadic interactions. By jointly modeling both participants in the interaction, as well as embedding multi- modal integration into the model itself, the Dyadformer surpasses the baseline and other concurrent approaches, underscoring Transformers' aptitude in deciphering multifaceted, noisy, and challenging tasks such as the analysis of human personality in interaction. Nonetheless, these experiments unveil the ubiquitous challenges when training Transformers, particularly in managing overfitting due to their demand for extensive datasets. Consequently, we conclude this thesis with a comprehensive investigation into Video Transformers, analyzing topics ranging from architectural designs and training strategies, to input embedding and tokenization, traversing through multi-modality and specific applications. Across these, we highlight trends which optimally harness spatio-temporal representations that handle video redundancy and high dimensionality. A culminating performance comparison is conducted in the realm of video action classification, spotlighting strategies that exhibit superior efficacy, even compared to traditional CNN-based methods.[cat] Aquesta tesi busca crear sistemes artificials que reflecteixin les habilitats de comprensió i interpretació humanes a través de l'ús de Transformers per a vídeo. L'objectiu és utilitzar aquestes arquitectures per comprendre millor la interacció humana i desenvolupar sistemes intel·ligents i conscients de l'entorn. Això implica explorar àmplies àrees de la Visió per Computador, des de la recopilació de dades fins a l'anàlisi de l'estat de l'art i la prova experimental d'aquests models. Una part essencial d'aquest estudi és la creació d'UDIVA, un ampli conjunt de dades multimodal i multivista que enregistra interaccions humanes cara a cara. Amb 147 participants i 188 sessions, UDIVA inclou contingut audiovisual, freqüència cardíaca, perfils de personalitat, dades sociodemogràfiques i transcripcions de les converses. És el conjunt de dades més gran conegut per a l'anàlisi de la interacció humana diàdica i proporciona un context ric per a l'estudi de les capacitats dels Transformers en entorns complexos. Per tal de validar la seva utilitat i les habilitats dels Transformers, ens centrem en la regressió de la personalitat. Inicialment, adaptem un Transformer de vídeo per integrar diverses fonts de context. Mitjançant experiments exhaustius, observem millores progressives en els resultats amb la inclusió de més context, confirmant la capacitat dels Transformers. Motivats per aquests resultats, desenvolupem el Dyadformer, una arquitectura per interaccions diàdiques de llarga duració. Aquesta nova arquitectura considera simultàniament els dos participants en la interacció i incorpora la multimodalitat en un sol model. El Dyadformer supera la nostra proposta inicial i altres treballs similars, destacant la capacitat dels Transformers per abordar tasques complexes. No obstant això, aquestos experiments revelen reptes d'entrenament dels Transformers, com el sobreajustament, per la seva necessitat de grans conjunts de dades. La tesi conclou amb una anàlisi profunda dels Transformers per a vídeo, incloent dissenys arquitectònics, estratègies d'entrenament, preprocessament de vídeos, tokenització i multimodalitat. S'identifiquen tendències per gestionar la redundància i alta dimensionalitat de vídeos i es realitza una comparació de rendiment en la classificació d'accions a vídeo, destacant estratègies d'eficàcia superior als mètodes tradicionals basats en convolucions

    Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects

    Get PDF
    These are the Proceedings of the 2nd IUI Workshop on Interacting with Smart Objects. Objects that we use in our everyday life are expanding their restricted interaction capabilities and provide functionalities that go far beyond their original functionality. They feature computing capabilities and are thus able to capture information, process and store it and interact with their environments, turning them into smart objects

    Artificial Intelligence and Ambient Intelligence

    Get PDF
    This book includes a series of scientific papers published in the Special Issue on Artificial Intelligence and Ambient Intelligence at the journal Electronics MDPI. The book starts with an opinion paper on “Relations between Electronics, Artificial Intelligence and Information Society through Information Society Rules”, presenting relations between information society, electronics and artificial intelligence mainly through twenty-four IS laws. After that, the book continues with a series of technical papers that present applications of Artificial Intelligence and Ambient Intelligence in a variety of fields including affective computing, privacy and security in smart environments, and robotics. More specifically, the first part presents usage of Artificial Intelligence (AI) methods in combination with wearable devices (e.g., smartphones and wristbands) for recognizing human psychological states (e.g., emotions and cognitive load). The second part presents usage of AI methods in combination with laser sensors or Wi-Fi signals for improving security in smart buildings by identifying and counting the number of visitors. The last part presents usage of AI methods in robotics for improving robots’ ability for object gripping manipulation and perception. The language of the book is rather technical, thus the intended audience are scientists and researchers who have at least some basic knowledge in computer science
    corecore