46 research outputs found

    A Deep Evolutionary Approach to Bioinspired Classifier Optimisation for Brain-Machine Interaction

    Get PDF
    This study suggests a new approach to EEG data classification by exploring the idea of using evolutionary computation to both select useful discriminative EEG features and optimise the topology of Artificial Neural Networks. An evolutionary algorithm is applied to select the most informative features from an initial set of 2550 EEG statistical features. Optimisation of a Multilayer Perceptron (MLP) is performed with an evolutionary approach before classification to estimate the best hyperparameters of the network. Deep learning and tuning with Long Short-Term Memory (LSTM) are also explored, and Adaptive Boosting of the two types of models is tested for each problem. Three experiments are provided for comparison using different classifiers: One for attention state classification, one for emotional sentiment classification, and a third experiment in which the goal is to guess the number a subject is thinking of. The obtained results show that an Adaptive Boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and 9.94% on the attentional, emotional, and number datasets, respectively. An evolutionary-optimised MLP achieves results close to the Adaptive Boosted LSTM for the two first experiments and significantly higher for the number-guessing experiment with an Adaptive Boosted DEvo MLP reaching 31.35%, while being significantly quicker to train and classify. In particular, the accuracy of the nonboosted DEvo MLP was of 79.81%, 96.11%, and 27.07% in the same benchmarks. Two datasets for the experiments were gathered using a Muse EEG headband with four electrodes corresponding to TP9, AF7, AF8, and TP10 locations of the international EEG placement standard. The EEG MindBigData digits dataset was gathered from the TP9, FP1, FP2, and TP10 locations

    Learning and mining from personal digital archives

    Get PDF
    Given the explosion of new sensing technologies, data storage has become significantly cheaper and consequently, people increasingly rely on wearable devices to create personal digital archives. Lifelogging is the act of recording aspects of life in digital format for a variety of purposes such as aiding human memory, analysing human lifestyle and diet monitoring. In this dissertation we are concerned with Visual Lifelogging, a form of lifelogging based on the passive capture of photographs by a wearable camera. Cameras, such as Microsoft's SenseCam can record up to 4,000 images per day as well as logging data from several incorporated sensors. Considering the volume, complexity and heterogeneous nature of such data collections, it is a signifcant challenge to interpret and extract knowledge for the practical use of lifeloggers and others. In this dissertation, time series analysis methods have been used to identify and extract useful information from temporal lifelogging images data, without benefit of prior knowledge. We focus, in particular, on three fundamental topics: noise reduction, structure and characterization of the raw data; the detection of multi-scale patterns; and the mining of important, previously unknown repeated patterns in the time series of lifelog image data. Firstly, we show that Detrended Fluctuation Analysis (DFA) highlights the feature of very high correlation in lifelogging image collections. Secondly, we show that study of equal-time Cross-Correlation Matrix demonstrates atypical or non-stationary characteristics in these images. Next, noise reduction in the Cross-Correlation Matrix is addressed by Random Matrix Theory (RMT) before Wavelet multiscaling is used to characterize the `most important' or `unusual' events through analysis of the associated dynamics of the eigenspectrum. A motif discovery technique is explored for detection of recurring and recognizable episodes of an individual's image data. Finally, we apply these motif discovery techniques to two known lifelog data collections, All I Have Seen (AIHS) and NTCIR-12 Lifelog, in order to examine multivariate recurrent patterns of multiple-lifelogging users

    Physical Activity Recognition and Identification System

    Get PDF
    Background: It is well-established that physical activity is beneficial to health. It is less known how the characteristics of physical activity impact health independently of total amount. This is due to the inability to measure these characteristics in an objective way that can be applied to large population groups. Accelerometry allows for objective monitoring of physical activity but is currently unable to identify type of physical activity accurately. Methods: This thesis details the creation of an activity classifier that can identify type from accelerometer data. The current research in activity classification was reviewed and methodological challenges were identified. The main challenge was the inability of classifiers to generalize to unseen data. Creating methods to mitigate this lack of generalisation represents the bulk of this thesis. Using the review, a classification pipeline was synthesised, representing the sequence of steps that all activity classifiers use. 1. Determination of device location and setting (Chapter 4) 2. Pre-processing (Chapter 5) 3. Segmenting into windows (Chapters 6) 4. Extracting features (Chapters 7,8) 5. Creating the classifier (Chapter 9) 6. Post-processing (Chapter 5) For each of these steps, methods were created and tested that allowed for a high level of generalisability without sacrificing overall performance. Results: The work in this thesis results in an activity classifier that had a good ability to generalize to unseen data. The classifier achieved an F1-score of 0.916 and 0.826 on data similar to its training data, which is statistically equivalent to the performance of current state of the art models (0.898, 0.765). On data dissimilar to its training data, the classifier achieved a significantly higher performance than current state of the art methods (0.759, 0.897 versus 0.352, 0.415). This shows that the classifier created in this work has a significantly greater ability to generalise to unseen data than current methods. Conclusion: This thesis details the creation of an activity classifier that allows for an improved ability to generalize to unseen data, thus allowing for identification of type from acceleration data. This should allow for more detailed investigation into the specific health effects of type in large population studies utilising accelerometers

    Relationship-based software attributes prioritization model for digital library sustainable development targets

    Get PDF
    Software attributes (SAs) represent the capability and usefulness of the software application in attaining sustainable development progress. To ensure a long-term positive impact on the aimed sustainable development targets (SDTs), an understanding of SAs relationship is required. The complexities of the study in this area significantly increased particularly with a huge gap in recognizing regulatory model and standards found from the literature. The previous research focusing on developing and designing new software technologies faced significant innovation and development effort gaps. Issues such as the rising cost, less strategy in purchasing as well as misallocation of the computing budget potentially lead towards lack of adopting new software technologies. Due to this phenomenon, sixty-five per cent of the countries participated in the UN2030 agenda are considered to lag in attaining their SDTs by the year 2030. This qualitative study, thus, proposed a relationship-based prioritization model in attaining the aimed SDTs for digital libraries. The focus was on deriving the SAs prioritization levels in the currently implemented software application focusing on the relationship of influences. In doing so, thirteen key attributes were generated via interviews with industry experts in this area. The pair-wise comparison and benefit-cost assessment tools were employed for data collection via structured interviews with nineteen digital librariesā€™ stakeholders at Malaysian higher learning institutions. The finding demonstrated similarities in prioritization levels for reliability, portability, and usability of digital library software (DLS). The reliability of DLS became the priority, followed by its portability as the fourth priority and its usability was the last priority. Meanwhile, the maintainability, functionality, and efficiency of DLS were identified in different priority levels. It also demonstrated that any changes or modification on the reliability of the DLS will influence the changes to SAs at a priority level lower than it was. Furthermore, the extent to which DLS portability will or will not influence other SAs was at priority fifth. Meanwhile, the usability of DLS did not influence any other SAs in attaining the aimed SDTs. The empirical findings of this study can be used as a guide to digital libraries towards better recognition of their current capabilities of DLS in attaining their aimed SDTs. The validated relationship-based prioritization model constructed could be used as a reference to provide direction for future research, particularly, in identifying good practices and lessons learned in this area

    Parkinson's Disease Management through ICT

    Get PDF
    Parkinson's Disease (PD) is a neurodegenerative disorder that manifests with motor and non-motor symptoms. PD treatment is symptomatic and tries to alleviate the associated symptoms through an adjustment of the medication. As the disease is evolving and this evolution is patient specific, it could be very difficult to properly manage the disease.The current available technology (electronics, communication, computing, etc.), correctly combined with wearables, can be of great use for obtaining and processing useful information for both clinicians and patients allowing them to become actively involved in their condition.Parkinson's Disease Management through ICT: The REMPARK Approach presents the work done, main results and conclusions of the REMPARK project (2011 ā€“ 2015) funded by the European Union under contract FP7-ICT-2011-7-287677. REMPARK system was proposed and developed as a real Personal Health Device for the Remote and Autonomous Management of Parkinsonā€™s Disease, composed of different levels of interaction with the patient, clinician and carers, and integrating a set of interconnected sub-systems: sensor, auditory cueing, Smartphone and server. The sensor subsystem, using embedded algorithmics, is able to detect the motor symptoms associated with PD in real time. This information, sent through the Smartphone to the REMPARK server, is used for an efficient management of the disease
    corecore