235,528 research outputs found

    Electrical Properties of Carbon Fiber Support Systems

    Full text link
    Carbon fiber support structures have become common elements of detector designs for high energy physics experiments. Carbon fiber has many mechanical advantages but it is also characterized by high conductivity, particularly at high frequency, with associated design issues. This paper discusses the elements required for sound electrical performance of silicon detectors employing carbon fiber support elements. Tests on carbon fiber structures are presented indicating that carbon fiber must be regarded as a conductor for the frequency region of 10 to 100 MHz. The general principles of grounding configurations involving carbon fiber structures will be discussed. To illustrate the design requirements, measurements performed with a silicon detector on a carbon fiber support structure at small radius are presented. A grounding scheme employing copper-kapton mesh circuits is described and shown to provide adequate and robust detector performance.Comment: 20 pages, 11 figures, submitted to NI

    Cooperative Game Theory within Multi-Agent Systems for Systems Scheduling

    Get PDF
    Research concerning organization and coordination within multi-agent systems continues to draw from a variety of architectures and methodologies. The work presented in this paper combines techniques from game theory and multi-agent systems to produce self-organizing, polymorphic, lightweight, embedded agents for systems scheduling within a large-scale real-time systems environment. Results show how this approach is used to experimentally produce optimum real-time scheduling through the emergent behavior of thousands of agents. These results are obtained using a SWARM simulation of systems scheduling within a High Energy Physics experiment consisting of 2500 digital signal processors.Comment: Fourth International Conference on Hybrid Intelligent Systems (HIS), Kitakyushu, Japan, December, 200

    Tuning of Kilopixel Transition Edge Sensor Bolometer Arrays with a Digital Frequency Multiplexed Readout System

    Full text link
    A digital frequency multiplexing (DfMUX) system has been developed and used to tune large arrays of transition edge sensor (TES) bolometers read out with SQUID arrays for mm-wavelength cosmology telescopes. The DfMUX system multiplexes the input bias voltages and output currents for several bolometers on a single set of cryogenic wires. Multiplexing reduces the heat load on the camera's sub-Kelvin cryogenic detector stage. In this paper we describe the algorithms and software used to set up and optimize the operation of the bolometric camera. The algorithms are implemented on soft processors embedded within FPGA devices operating on each backend readout board. The result is a fully parallelized implementation for which the setup time is independent of the array size.Comment: 5 pages, 4 figure
    • …
    corecore