14,019 research outputs found

    A Multi-layer Hybrid Framework for Dimensional Emotion Classification

    Get PDF
    This paper investigates dimensional emotion prediction and classification from naturalistic facial expressions. Similarly to many pattern recognition problems, dimensional emotion classification requires generating multi-dimensional outputs. To date, classification for valence and arousal dimensions has been done separately, assuming that they are independent. However, various psychological findings suggest that these dimensions are correlated. We therefore propose a novel, multi-layer hybrid framework for emotion classification that is able to model inter-dimensional correlations. Firstly, we derive a novel geometric feature set based on the (a)symmetric spatio-temporal characteristics of facial expressions. Subsequently, we use the proposed feature set to train a multi-layer hybrid framework composed of a tem- poral regression layer for predicting emotion dimensions, a graphical model layer for modeling valence-arousal correlations, and a final classification and fusion layer exploiting informative statistics extracted from the lower layers. This framework (i) introduces the Auto-Regressive Coupled HMM (ACHMM), a graphical model specifically tailored to accommodate not only inter-dimensional correlations but also to exploit the internal dynamics of the actual observations, and (ii) replaces the commonly used Maximum Likelihood principle with a more robust final classification and fusion layer. Subject-independent experimental validation, performed on a naturalistic set of facial expressions, demonstrates the effectiveness of the derived feature set, and the robustness and flexibility of the proposed framework

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database
    • …
    corecore