61 research outputs found

    Time Stamp – A Novel Time-to-Digital Demodulation Method for Bioimpedance Implant Applications

    Get PDF
    Bioimpedance analysis is a noninvasive and inexpensive technology used to investigate the electrical properties of biological tissues. The analysis requires demodulation to extract the real and imaginary parts of the impedance. Conventional systems use complex architectures such as I-Q demodulation. In this paper, a very simple alternative time-to-digital demodulation method or ‘time stamp’ is proposed. It employs only three comparators to identify or stamp in the time domain, the crossing points of the excitation signal, and the measured signal. In a CMOS proof of concept design, the accuracy of impedance magnitude and phase is 97.06% and 98.81% respectively over a bandwidth of 10 kHz to 500 kHz. The effect of fractional-N synthesis is analysed for the counter-based zero crossing phase detector obtaining a finer phase resolution (0.51˚ at 500 kHz) using a counter clock frequency ( fclk = 12.5 MHz). Because of its circuit simplicity and ease of transmitting the time stamps, the method is very suited to implantable devices requiring low area and power consumption

    A 122 fps, 1 MHz bandwidth multi-frequency wearable EIT belt featuring novel active electrode architecture for neonatal thorax vital sign monitoring

    Get PDF
    A highly integrated, wearable electrical impedance tomography (EIT) belt for neonatal thorax vital multiple sign monitoring is presented. The belt has sixteen active electrodes. Each has an application specific integrated circuit (ASIC) connected to an electrode. The ASIC contains a fully differential current driver, a high-performance instrumentation amplifier (IA), a digital controller and multiplexors. The wearable EIT belt features a new active electrode architecture that allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It provides intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio. The ASIC was designed in a CMOS 0.35-μm high-voltage technology. The high specification EIT belt has an image frame rate of 122 fps, a wide operating bandwidth of 1 MHz and multi-frequency operation. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1o variation across all possible channels. The image results confirmed the advantage of the new active electrode architecture and the benefit of wideband, multi-frequency EIT operation. The wearable EIT belt can also detect patient position and torso shape information using a MEMS sensor interfaced to each ASIC. The system successfully captured high quality lung respiration EIT images, breathing cycle and heart rate

    A high frame rate wearable EIT system using active electrode ASICs for lung respiration and heart rate monitoring

    Get PDF
    A high specification, wearable, electrical impedance tomography (EIT) system with 32 active electrodes is presented. Each electrode has an application specific integrated circuit (ASIC) mounted on a flexible printed circuit board, which is then wrapped inside a disposable fabric cover containing silver-coated electrodes to form the wearable belt. It is connected to a central hub that operates all the 32 ASICs. Each ASIC comprises a high- performance current driver capable of up to 6 mAp−p output, a voltage buffer for EIT and heart rate signal recording as well as contact impedance monitoring, and a sensor buffer that provides multi-parameter sensing. The ASIC was designed in a CMOS 0.35-μm high-voltage process technology. It operates from ±9-V power supplies and occupies a total die area of 3.9 mm2. The EIT system has a bandwidth of 500 kHz and employs two parallel data acquisition channels to achieve a frame rate of 107 frames/s, the fastest wearable EIT system reported to date. Measured results show that the system has a measurement accuracy of 98.88% and a minimum EIT detectability of 0.86 Q/frame. Its successful operation in capturing EIT lung respiration and heart rate biosignals from a volunteer is demonstrated

    A high frame rate wearable EIT system using active electrode ASICs for lung respiration and heart rate monitoring

    Get PDF
    A high specification, wearable, electrical impedance tomography (EIT) system with 32 active electrodes is presented. Each electrode has an application specific integrated circuit (ASIC) mounted on a flexible printed circuit board, which is then wrapped inside a disposable fabric cover containing silver-coated electrodes to form the wearable belt. It is connected to a central hub that operates all the 32 ASICs. Each ASIC comprises a high- performance current driver capable of up to 6 mAp−p output, a voltage buffer for EIT and heart rate signal recording as well as contact impedance monitoring, and a sensor buffer that provides multi-parameter sensing. The ASIC was designed in a CMOS 0.35-μm high-voltage process technology. It operates from ±9-V power supplies and occupies a total die area of 3.9 mm2. The EIT system has a bandwidth of 500 kHz and employs two parallel data acquisition channels to achieve a frame rate of 107 frames/s, the fastest wearable EIT system reported to date. Measured results show that the system has a measurement accuracy of 98.88% and a minimum EIT detectability of 0.86 Q/frame. Its successful operation in capturing EIT lung respiration and heart rate biosignals from a volunteer is demonstrated

    Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technique based on the injection of a current or voltage pattern through electrodes on the skin of the patient, and on the reconstruction of the internal conductivity distribution from the voltages collected by the electrodes. Compared to other imaging techniques, EIT shows significant advantages: it does not use ionizing radiation, is non-invasive and is characterized by high temporal resolution. Moreover, its low cost and high portability make it suitable for real-time, bedside monitoring. However, EIT is also characterized by some technical limitations that cause poor spatial resolution. The possibility to design wearable devices based on EIT has recently given a boost to this technology. In this paper we reviewed EIT physical principles, hardware design and major clinical applications, from the classical to a wearable setup. A wireless and wearable EIT system seems a promising frontier of this technology, as it can both facilitate making clinical measurements and open novel scenarios to EIT systems, such as home monitoring

    A Goertzel Filter Based System for Fast Simultaneous Multi-Frequency EIS

    Get PDF
    Bioimpedance measurement is a non-invasive, radiation-free, and inexpensive method for measuring the electrical properties of biological tissues. In applications where transients occur, the commonly used swept sinewave is replaced with broadband signals such as multisine. This makes the signal generation and the extraction of the real and imaginary parts of the impedance challenging. In this brief, an alternative to traditional fast Fourier transform (FFT) or coherent demodulation is presented. Based on the Goertzel filter, this alternative is simpler and requires very few digital resources. Its robustness to the harmonic fold back phenomenon, enables simple ternary current pulses to be used for excitation. The developed digital architecture is capable of simultaneous demodulation of 16 frequencies with an accuracy of 97% and 96% on the magnitude and phase measurement respectively. Employing a ternary sequence allows the use of a low power H-bridge current driver. The analog front-end and demodulation algorithm were implemented in an ASIC using a 180-nm CMOS technology. The system was tested on an isolated pig heart distinguishing edema from non-edema tissue by impedance changes

    Advances in Integrated Circuits and Systems for Wearable Biomedical Electrical Impedance Tomography

    Get PDF
    Electrical impedance tomography (EIT) is an impedance mapping technique that can be used to image the inner impedance distribution of the subject under test. It is non-invasive, inexpensive and radiation-free, while at the same time it can facilitate long-term and real-time dynamic monitoring. Thus, EIT lends itself particularly well to the development of a bio-signal monitoring/imaging system in the form of wearable technology. This work focuses on EIT system hardware advancement using complementary metal oxide semiconductor (CMOS) technology. It presents the design and testing of application specific integrated circuit (ASIC) and their successful use in two bio-medical applications, namely, neonatal lung function monitoring and human-machine interface (HMI) for prosthetic hand control. Each year fifteen million babies are born prematurely, and up to 30% suffer from lung disease. Although respiratory support, especially mechanical ventilation, can improve their survival, it also can cause injury to their vulnerable lungs resulting in severe and chronic pulmonary morbidity lasting into adulthood, thus an integrated wearable EIT system for neonatal lung function monitoring is urgently needed. In this work, two wearable belt systems are presented. The first belt features a miniaturized active electrode module built around an analog front-end ASIC which is fabricated with 0.35-µm high-voltage process technology with ±9 V power supplies and occupies a total die area of 3.9 mm². The ASIC offers a high power active current driver capable of up to 6 mAp-p output, and wideband active buffer for EIT recording as well as contact impedance monitoring. The belt has a bandwidth of 500 kHz, and an image frame rate of 107 frame/s. To further improve the system, the active electrode module is integrated into one ASIC. It contains a fully differential current driver, a current feedback instrumentation amplifier (IA), a digital controller and multiplexors with a total die area of 9.6 mm². Compared to the conventional active electrode architecture employed in the first EIT belt, the second belt features a new architecture. It allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It has intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio (CMRR) up to 74 dB, and with active gain, the noise level can be reduced by a factor of √3 using the adjacent scan. The second belt has a wider operating bandwidth of 1 MHz and multi-frequency operation. The image frame rate is 122 frame/s, the fastest wearable EIT reported to date. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1° variation across all channels. In addition the ASIC facilitates several other functionalities to provide supplementary clinical information at the bedside. With the advancement of technology and the ever-increasing fusion of computer and machine into daily life, a seamless HMI system that can recognize hand gestures and motions and allow the control of robotic machines or prostheses to perform dexterous tasks, is a target of research. Originally developed as an imaging technique, EIT can be used with a machine learning technique to track bones and muscles movement towards understanding the human user’s intentions and ultimately controlling prosthetic hand applications. For this application, an analog front-end ASIC is designed using 0.35-µm standard process technology with ±1.65 V power supplies. It comprises a current driver capable of differential drive and a low noise (9μVrms) IA with a CMRR of 80 dB. The function modules occupy an area of 0.07 mm². Using the ASIC, a complete HMI system based on the EIT principle for hand prosthesis control has been presented, and the user’s forearm inner bio-impedance redistribution is assessed. Using artificial neural networks, bio-impedance redistribution can be learned so as to recognise the user’s intention in real-time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation. Experiments with five subjects show that the system can achieve an overall recognition accuracy of 95.8%

    Electrical Impedance Tomography for Biomedical Applications: Circuits and Systems Review

    Get PDF
    There has been considerable interest in electrical impedance tomography (EIT) to provide low-cost, radiation-free, real-time and wearable means for physiological status monitoring. To be competitive with other well-established imaging modalities, it is important to understand the requirements of the specific application and determine a suitable system design. This paper presents an overview of EIT circuits and systems including architectures, current drivers, analog front-end and demodulation circuits, with emphasis on integrated circuit implementations. Commonly used circuit topologies are detailed, and tradeoffs are discussed to aid in choosing an appropriate design based on the application and system priorities. The paper also describes a number of integrated EIT systems for biomedical applications, as well as discussing current challenges and possible future directions
    • …
    corecore