14,146 research outputs found

    Is contrast-enhanced US alternative to spiral CT in the assessment of treatment outcome of radiofrequency ablation in hepatocellular carcinoma?

    Get PDF
    Purpose: The present study was conducted to assess the efficacy of contrast-enhanced ultrasound with low mechanical index in evaluating the response of percutaneous radiofrequency ablation treatment of hepatocellular carcinoma by comparing it with 4-row spiral computed tomography. Materials and Methods: 100 consecutive patients (65 men and 35 women; age range: 62 – 76 years) with solitary hepatocellular carcinomas (mean lesion diameter: 3.7cm± 1.1cm SD) underwent internally cooled radiofrequency ablation. Therapeutic response was evaluated at one month after the treatment with triple-phasic contrast-enhanced spiral CT and low-mechanical index contrast-enhanced ultrasound following bolus injection of 2.4 ml of Sonovue (Bracco, Milan). 60 out of 100 patients were followed up for another 3 months. Contrast-enhanced sonographic studies were reviewed by two blinded radiologists in consensus. Sensitivity, specificity, NPV and PPV of contrast-enhanced ultrasound examination were determined. Results: After treatment, contrast-enhanced ultrasound identified persistent signal enhancement in 24 patients (24%), whereas no intratumoral enhancement was detected in the remaining 76 patients (76%). Using CT imaging as gold standard, the sensitivity, specificity, NPV, and PPV of contrast enhanced ultrasound were 92.3% (95% CI = 75.9 – 97.9%), 100% (95% CI = 95.2 – 100%), 97.4% (95% CI = 91.1 – 99.3%), and 100% (95% CI = 86.2 – 100%). Conclusion: Contrast-enhanced ultrasound with low mechanical index using Sonovue is a feasible tool in evaluating the response of hepatocellular carcinoma to radiofrequency ablation. Accuracy is comparable to 4-row spiral CT

    Segmentation of articular cartilage and early osteoarthritis based on the fuzzy soft thresholding approach driven by modified evolutionary ABC optimization and local statistical aggregation

    Get PDF
    Articular cartilage assessment, with the aim of the cartilage loss identification, is a crucial task for the clinical practice of orthopedics. Conventional software (SW) instruments allow for just a visualization of the knee structure, without post processing, offering objective cartilage modeling. In this paper, we propose the multiregional segmentation method, having ambitions to bring a mathematical model reflecting the physiological cartilage morphological structure and spots, corresponding with the early cartilage loss, which is poorly recognizable by the naked eye from magnetic resonance imaging (MRI). The proposed segmentation model is composed from two pixel's classification parts. Firstly, the image histogram is decomposed by using a sequence of the triangular fuzzy membership functions, when their localization is driven by the modified artificial bee colony (ABC) optimization algorithm, utilizing a random sequence of considered solutions based on the real cartilage features. In the second part of the segmentation model, the original pixel's membership in a respective segmentation class may be modified by using the local statistical aggregation, taking into account the spatial relationships regarding adjacent pixels. By this way, the image noise and artefacts, which are commonly presented in the MR images, may be identified and eliminated. This fact makes the model robust and sensitive with regards to distorting signals. We analyzed the proposed model on the 2D spatial MR image records. We show different MR clinical cases for the articular cartilage segmentation, with identification of the cartilage loss. In the final part of the analysis, we compared our model performance against the selected conventional methods in application on the MR image records being corrupted by additive image noise.Web of Science117art. no. 86

    Optically Generated Ultrasound for Intracoronary Imaging

    Get PDF
    Conventional intravascular ultrasound (IVUS) devices use piezoelectric transducers to electrically generate and receive US. With this paradigm, there are numerous challenges that restrict improvements in image quality. First, with miniaturization of the transducers to reduce device size, it can be challenging to achieve the sensitivities and bandwidths required for large tissue penetration depths and high spatial resolution. Second, complexities associated with manufacturing miniaturized electronic transducers can have significant cost implications. Third, with increasing interest in molecular characterization of tissue in-vivo, it has been challenging to incorporate optical elements for multimodality imaging with photoacoustics (PA) or near-infrared spectroscopy (NIRS) whilst maintaining the lateral dimensions suitable for intracoronary imaging. Optical Ultrasound (OpUS) is a new paradigm for intracoronary imaging. US is generated at the surface of a fiber optic transducer via the photoacoustic effect. Pulsed or modulated light is absorbed in an engineered coating on the fiber surface and converted to thermal energy. The subsequent temperature rise leads to a pressure rise within the coating, which results in a propagating ultrasound wave. US reflections from imaged structures are received with optical interferometry. With OpUS, high bandwidths (31.5 MHz) and pressures (21.5 MPa) have enabled imaging with axial resolutions better than 50 μm and at depths >20 mm. These values challenge those of conventional 40 MHz IVUS technology and show great potential for future clinical application. Recently developed nanocomposite coating materials, that are highly transmissive at light wavelengths used for PA and NIRS light, can facilitate multimodality imaging, thereby enabling molecular characterization

    Multi-frequency ultrasound imaging: phantom study

    Get PDF
    Introduction: In ultrasound imaging there is compromise between the penetration of signal at certain depths into the object and image resolution as the ultrasound probe only can transmit single frequency signals in one transmission. Using curvilinear ultrasound probe with 2 to 5 MHz frequency bandwidth, this study investigated the use of multi-frequency imaging to enhance the quality of phantom images. Methods: Siemens Acuson X150 with curvilinear ultrasound transducer was used to scan the organs of interest (kidney, gallbladder and pancreas) of the ultrasound abdominal phantom. Different images at the different selected frequencies (2.5, 3.6 and 5.0 MHz) were created by fixing the position and the orientation of the transducer in each of the scanning process. Different-frequency images were generated and combined to produce composite (multi-frequency) image. Results: In this study, the quality of the composite images was evaluated based on signal-to noise ratio (SNR) and the obtained results were compared with the single frequency images. Besides, the comparison was also made in terms of overall image quality (noise and sharpness of organ outline) through perceived image quality analysis. Based on calculated SNR, the composite image of the kidney, gallbladder and pancreas recorded higher SNR value as compared to the single frequency images. However, through perceived image quality, most of the observers viewed that the quality of the composite image of the kidney, gallbladder and pancreas is poor as compared to the single frequency image. Conclusions: Image quality of ultrasound imaging is improved by combining multiple ultrasound frequency images into a single composite image. This is achieved as high SNR is obtained in the composite image. However, through perceived image quality, the overall image quality of the composite image was poor

    Fourier domain diffuse correlation spectroscopy with heterodyne holographic detection

    Get PDF
    We present a new approach to diffuse correlation spectroscopy which overcomes the limited light throughput of single-mode photon counting techniques. Our system employs heterodyne holographic detection to allow parallel measurement of the power spectrum of a fluctuating electric field across thousands of modes, at the shot noise limit, using a conventional sCMOS camera. This yields an order of magnitude reduction in detector cost compared to conventional techniques, whilst also providing robustness to the effects of ambient light and an improved signal-to-noise ratio during in vitro experiments. We demonstrate a GPU-accelerated holographic demodulation system capable of processing the incoming data (79.4 M pixels per second) in real-time, and a novel Fourier domain model of diffuse correlation spectroscopy which permits the direct recovery of flow parameters from the measured data. Our detection and modelling strategy are rigorously validated by modulating the Brownian component of an optical tissue phantom, demonstrating absolute measurements of the Brownian diffusion coefficient in excellent agreement with conventional methods. We further demonstrate the feasibility of our system through in vivo measurement of pulsatile flow rates measured in the human forearm
    corecore