12,853 research outputs found

    Technical evolution of liquid crystal displays

    Get PDF
    Liquid crystal displays (LCDs) have evolved rapidly as a result of fierce competition among the various LCD technologies, and now occupy the largest proportion of the entire display market. The evolution of LCDs continues, with new technologies and new materials in development to replace current devices. This review summarizes the key technologies used in commercially successful LCD products, focusing on the requirements for high-end displays and the benefits of the in-plane switching and multi-domain vertical alignment modes. As in past advances, the development of new materials will play an important role in the continued technical evolution of LCDs.open252

    High Speed and Wide Viewing Angle Liquid Crystal Displays

    Get PDF
    Novel structural configurations of a TFT-LCD (Thin Film Transistor Liquid Crystal Display) which results in both fast response to input data and provides wide-viewing-angles. The structure of the device is comprised of one pixel electrode layer and two common electrode layers. The structure of the invention can be used with liquid crystal display television (LCD-TV) monitors that require both fast-response as well as wide-viewing-angle. In addition, other liquid crystal technologies which require high speed response would benefit from the TFT-LCD of the present invention

    Optical rotatory power of polymer-stabilized blue phase liquid crystals

    Get PDF
    Macroscopically, a polymer-stabilized blue phase liquid crystal (BPLC) is assumed to be an optically isotropic medium. Our experiment challenges this assumption. Our results indicate that the optical rotatory power (ORP) of some nano-scale double-twist cylinders in a BPLC composite causes the polarization axis of the transmitted light to rotate a small angle, which in turn leaks through the crossed polarizers. Rotating the analyzer in azimuthal direction to correct this ORP can greatly improve the contrast ratio. A modified De Vries equation based on a thin twisted-nematic layer is proposed to explain the observed phenomena

    Fast-response Liquid Crystal Displays

    Get PDF
    After about five decades of extensive material research and device development, followed by massive investment in manufacturing technology, thin-film-transistor liquid-crystaldisplay (TFT-LCD) has finally become the dominant flat panel display technology. Nowadays, LCD performances, such as viewing angle, contrast ratio, and resolution, have reached acceptable levels. The remaining major technical challenges are response time, light efficiency, and sunlight readability. Fast response time is desired to reduce motion blur and to enable field sequential color displays using red (R), green (G), and blue (B) LEDs (light emitting diodes) without noticeable color breakup. Sequential RGB colors would eliminate the commonly used spatial color filters which in turn enhances light efficiency and resolution density by ~ 3X. In this dissertation, several new approaches for achieving fast-response LCDs are explored. From material viewpoint, the most straightforward approach for achieving fast response time is to employ a thin cell gap with high birefringence and low viscosity liquid crystal (LC). We investigated the thin cell approach theoretically and experimentally. Voltage shielding effect and anchoring energy effect of alignment layers are found to play important roles on operating voltage and response time. Simulations are carried out to understand the underlying physics and confirm the experimental results quantitatively. Another approach to realize fast response time is to explore novel device configuration. Here, we proposed a dual fringing-field switching (DFFS) mode in which small LC domains are iv formed following the distribution of fringing fields. Therefore, it exhibits submillisecond response time without using thin cell or overdrive/undershoot voltage method. The response time of the DFFS mode is ~20X faster than a conventional vertical aligned LCD. In addition, high optical efficiency is achieved from the complementary top and bottom active LC domains. Two transmissive and one transflective LCDs using DFFS mode are conceived and their electrooptical properties investigated. A shortcoming of DFFS LCDs is their fabrication complexity. To keep the advantages of this fast-response mode while avoiding the requirement of double-TFTs and pixel registration, we modified the device structure to transflective LCD which uses a single TFT in each pixel and vertical aligned positive dielectric anisotropy LC. Two types of electrodes are considered: fringing-field switching (FFS) and in-plane switching (IPS). Besides fast response time and high transmittance, such a transflective LCD shows good sunlight readability. As nematic LC is gradually approaching to its limit in term of response time, polymerstabilized blue phase (PSBP) LCD is emerging. It has potential to become next-generation display because of following revolutionary features: submillisecond response time, no need for alignment layer, good dark state and symmetric viewing angle, and cell gap insensitivity if IPS electrode is employed. In this dissertation, we studied the material-property correlation of Kerr effect-induced birefringence in nano-structured PSBP LC composites. Furthermore, a new device configuration of BP LCD with corrugated electrodes is proposed to solve two critical technical issues: high driving voltage and relatively low transmittance. The on-state voltage can be reduced from ~35 Vrms to ~10 Vrms which will enable TFT addressing, and the transmittance is improved from ~65% to ~85%. This new device configuration will accelerate the emergence of v PSBP LCD. Wide view is another important requirement for a high-end display. Several new LCD configurations with negative A-plate and biaxial plate as phase compensation films are proposed to achieve wide view and broadband operation. The underlying working principles are studied and detailed display performances are included in this dissertation

    Advanced liquid crystal displays with supreme image qualities

    Get PDF
    Several metrics are commonly used to evaluate the performance of display devices. In this dissertation, we analyze three key parameters: fast response time, wide color gamut, and high contrast ratio, which affect the final perceived image quality. Firstly, we investigate how response time affects the motion blur, and then discover the 2-ms rule. With advanced low-viscosity materials, new operation modes, and backlight modulation technique, liquid crystal displays (LCDs) with an unnoticeable image blur can be realized. Its performance is comparable to an impulse-type display, like cathode ray tube (CRT). Next, we propose two novel backlight configurations to improve an LCD\u27s color gamut. One is to use a functional reflective polarizer (FRP), acting as a notch filter to block the unwanted light, and the other is to combine FRP with a patterned half-wave plate to suppress the crosstalk between blue and green/red lights. In experiment, we achieved 97.3% Rec. 2020 in CIE 1976 color space, which is approaching the color gamut of a laser projector. Finally, to enhance an LCD\u27s contrast ratio, we proposed a novel device configuration by adding an in-cell polarizer between LC layer and color filter array. The CR for a vertically-aligned LCD is improved from 5000:1 to 20,000:1, and the CR for a fringe field switching LCD is improved from 2000:1 to over 3000:1. To further enlarge CR to fulfill the high dynamic range requirement, a dual-panel LCD system is proposed and the measured contrast ratio exceeds 1,000,000:1. Overall speaking, such an innovated LCD exhibits supreme image qualities with motion picture response time comparable to CRT, vivid color to laser projector, and contrast ratio to OLED. Along with other outstanding features, like high peak brightness, high resolution density, long lifetime, and low cost, LCD would continue to maintain its dominance in consumer electronics in the foreseeable future

    Advanced Liquid Crystal Materials For Display And Photonic Applications

    Get PDF
    Thin-film-transistor (TFT) liquid crystal display (LCD) has been widely used in smartphones, pads, laptops, computer monitors, and large screen televisions, just to name a few. A great deal of effort has been delved into wide viewing angle, high resolution, low power consumption, and vivid color. However, relatively slow response time and low transmittance remain as technical challenges. To improve response time, several approaches have been developed, such as low viscosity liquid crystals, overdrive and undershoot voltage schemes, thin cell gap with a high birefringence liquid crystal, and elevated temperature operation. The state-of-the-art gray-to-gray response time of a nematic LC device is about 5 ms, which is still not fast enough to suppress the motion picture image blur. On the other hand, the LCD panel\u27s transmittance is determined by the backlight, polarizers, TFT aperture ratio, LC transmittance, and color filters. Recently, a fringe-field-switching mode using a negative dielectric anisotropy (Δε) LC (n-FFS) has been demonstrated, showing high transmittance (98%), single gamma curve, and cell gap insensitivity. It has potential to replace the commonly used p-FFS (FFS using positive Δε LC) for mobile displays. With the urgent need of submillisecond response time for enabling color sequential displays, polymer-stabilized blue phase liquid crystal (PS-BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLCs exhibit several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltage-off state, and large cell gap tolerance. However, some bottlenecks such as high operation voltage, hysteresis, residual birefringence, and slow charging issue due to the large capacitance, remain to be overcome before their widespread applications can be realized. The material system of PS-BPLC, including nematic LC host, chiral dopant, and polymer network, are discussed in detail. Each component plays an essential role affecting the electro-optic properties and the stability of PS-BPLC. In a PS-BPLC system, in order to lower the operation voltage the host LC usually has a very large dielectric anisotropy (Δε \u3e 100), which is one order of magnitude larger than that of a nematic LC. Such a large Δε not only leads to high viscosity but also results in a large capacitance. High viscosity slows down the device fabrication process and increases device response time. On the other hand, large capacitance causes slow charging time to each pixel and limits the frame rate. To reduce viscosity, we discovered that by adding a small amount (~6%) of diluters, the response time of the PS-BPLC is reduced by 2X-3X while keeping the Kerr constant more or less unchanged. Besides, several advanced PS-BPLC materials and devices have been demonstrated. By using a large Δε BPLC, we have successfully reduced the voltage to \u3c10V while maintaining submillisecond response time. Finally we demonstrated an electric fieldindeced monodomain PS-BPLC, which enables video-rate reflective display with vivid colors. The highly selective reflection in polarization makes it promising for photonics application. Besides displays in the visible spectral region, LC materials are also very useful electro-optic media for near infrared and mid-wavelength infrared (MWIR) devices. However, large absorption has impeded the widespread application in the MWIR region. With delicate molecular design strategy, we balanced the absorption and liquid crystal phase stability, and proposed a fluoro-terphenyl compound with low absorption in both MWIR and near IR regions. This compound serves as an important first example for future development of low-loss MWIR liquid crystals, which would further expand the application of LCs for amplitude and/or phase modulation in MWIR region

    High Efficiency and Wide Color Gamut Liquid Crystal Displays

    Get PDF
    Liquid crystal display (LCD) has become ubiquitous and indispensable in our daily life. Recently, it faces strong competition from organic light emitting diode (OLED). In order to maintain a strong leader position, LCD camp has an urgent need to enrich the color performance and reduce the power consumption. This dissertation focuses on solving these two emerging and important challenges. In the first part of the dissertation we investigate the quantum dot (QD) technology to improve the both the color gamut and the light efficiency of LCD. QD emits saturated color and grants LCD the capability to reproduce color vivid images. Moreover, the QD emission spectrum can be custom designed to match to transmission band of color filters. To fully take advantage of QD\u27s unique features, we propose a systematic modelling of the LCD backlight and optimize the QD spectrum to simultaneously maximize the color gamut and light efficiency. Moreover, QD enhanced LCD demonstrates several advantages: excellent ambient contrast, negligible color shift and controllable white point. Besides three primary LCD, We also present a spatiotemporal four-primary QD enhanced LCD. The LCD\u27s color is generated partially from time domain and partially from spatial domain. As a result, this LCD mode offers 1.5× increment in spatial resolution, 2× brightness enhancement, slightly larger color gamut and mitigated LC response requirement (~4ms). It can be employed in the commercial TV to meet the challenging Energy star 6 regulation. Besides conventional LCD, we also extend the QD applications to liquid displays and smart lighting devices. The second part of this dissertation focuses on improving the LCD light efficiency. Conventional LCD system has fairly low light efficiency (4%~7%) since polarizers and color filters absorb 50% and 67% of the incoming light respectively. We propose two approaches to reduce the light loss within polarizers and color filters. The first method is a polarization preserving backlight system. It can be combined with linearly polarized light source to boost the LCD efficiency. Moreover, this polarization preserving backlight offers high polarization efficiency (~77.8%), 2.4× on-axis luminance enhancement, and no need for extra optics films. The second approach is a LCD backlight system with simultaneous color/polarization recycling. We design a novel polarizing color filter with high transmittance ( \u3e 90%), low absorption loss (~3.3%), high extinction ratio (\u3e10,000:1) and large angular tolerance (up to ±50˚). This polarizing color filter can be used in LCD system to introduce the color/polarization recycling and accordingly boost LCD efficiency by ~3 times. These two approaches open new gateway for ultra-low power LCDs. In the final session of this dissertation, we demonstrate a low power and color vivid reflective liquid crystal on silicon (LCOS) display with low viscosity liquid crystal mixture. Compared with commercial LC material, the new LC mixture offers ~4X faster response at 20oC and ~8X faster response at -20°C. This fast response LC material enables the field-sequential-color (FSC) driving for power saving. It also leads to several attractive advantages: submillisecond response time at room temperature, vivid color even at -20oC, high brightness, excellent ambient contrast ratio, and suppressed color breakup. With this material improvement, LCOS display can be promising for the emerging wearable display market
    corecore