7,503 research outputs found

    Multi-dimensional data stream compression for embedded systems

    Get PDF
    The rise of embedded systems and wireless technologies led to the emergence of the Internet of Things (IoT). Connected objects in IoT communicate with each other by transferring data streams over the network. For instance, in Wireless Sensor Networks (WSNs), sensor-equipped devices use sensors to capture properties, such as temperature or accelerometer, and send 1D or nD data streams to a host system. Power consumption is a critical problem for connected objects that have to work for a long time without being recharged, as it greatly affects their lifetime and usability. Data summarization is key for energy-constrained connected devices, as transmitting fewer data can reduce energy usage during transmission. Data compression, in particular, can compress the data stream while preserving information to a great extent. Many compression methods have been proposed in previous research. However, most of them are either not applicable to connected objects, due to resource limitation, or only handle one-dimensional streams while data acquired in connected objects are often multi-dimensional. Lightweight Temporal Compression (LTC) is among the lossy stream compression methods that provide the highest compression rate for the lowest CPU and memory consumption. In this thesis, we investigate the extension of LTC to multi-dimensional streams. First, we provide a formulation of the algorithm in an arbitrary vectorial space of dimension n. Then, we implement the algorithm for the infinity and Euclidean norms, in spaces of dimension 2D+t and 3D+t. We evaluate our implementation on 3D acceleration streams of human activities, on Neblina, a module integrating multiple sensors developed by our partner Motsai. Results show that the 3D implementation of LTC can save up to 20% in energy consumption for slow-paced activities, with a memory usage of about 100 B. Finally, we compare our method with polynomial regression compression methods in different dimensions. Our results show that our extension of LTC gives a higher compression ratio than the polynomial regression method, while using less memory and CPU

    Motion compensated micro-CT reconstruction for in-situ analysis of dynamic processes

    Get PDF
    This work presents a framework to exploit the synergy between Digital Volume Correlation ( DVC) and iterative CT reconstruction to enhance the quality of high-resolution dynamic X-ray CT (4D-mu CT) and obtain quantitative results from the acquired dataset in the form of 3D strain maps which can be directly correlated to the material properties. Furthermore, we show that the developed framework is capable of strongly reducing motion artifacts even in a dataset containing a single 360 degrees rotation

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Intrinsic Dynamic Shape Prior for Fast, Sequential and Dense Non-Rigid Structure from Motion with Detection of Temporally-Disjoint Rigidity

    No full text
    While dense non-rigid structure from motion (NRSfM) has been extensively studied from the perspective of the reconstructability problem over the recent years, almost no attempts have been undertaken to bring it into the practical realm. The reasons for the slow dissemination are the severe ill-posedness, high sensitivity to motion and deformation cues and the difficulty to obtain reliable point tracks in the vast majority of practical scenarios. To fill this gap, we propose a hybrid approach that extracts prior shape knowledge from an input sequence with NRSfM and uses it as a dynamic shape prior for sequential surface recovery in scenarios with recurrence. Our Dynamic Shape Prior Reconstruction (DSPR) method can be combined with existing dense NRSfM techniques while its energy functional is optimised with stochastic gradient descent at real-time rates for new incoming point tracks. The proposed versatile framework with a new core NRSfM approach outperforms several other methods in the ability to handle inaccurate and noisy point tracks, provided we have access to a representative (in terms of the deformation variety) image sequence. Comprehensive experiments highlight convergence properties and the accuracy of DSPR under different disturbing effects. We also perform a joint study of tracking and reconstruction and show applications to shape compression and heart reconstruction under occlusions. We achieve state-of-the-art metrics (accuracy and compression ratios) in different scenarios

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Metallic tube type energy absorbers: a synopsis

    Get PDF
    This paper presents an overview of energy absorbers in the form of tubes in which the material used is predominantly mild steel and/or aluminium. A brief summary is also made of frusta type energy absorbers. The common modes of deformation such as lateral and axial compression, indentation and inversion are reviewed. Theoretical, numerical and experimental methods which help to understand the behaviour of such devices under various loading conditions are outlined. Although other forms of energy absorbing materials and structures exist such as composites and honeycombs, this is deemed outside the scope of this review. However, a brief description will be given on these materials. It is hoped that this work will provide a useful platform for researchers and design engineers to gain a useful insight into the progress made over the last few decades in the field of tube type energy absorbers
    corecore