948 research outputs found

    IoTwins: Design and implementation of a platform for the management of digital twins in industrial scenarios

    Get PDF
    With the increase of the volume of data produced by IoT devices, there is a growing demand of applications capable of elaborating data anywhere along the IoT-to-Cloud path (Edge/Fog). In industrial environments, strict real-time constraints require computation to run as close to the data origin as possible (e.g., IoT Gateway or Edge nodes), whilst batch-wise tasks such as Big Data analytics and Machine Learning model training are advised to run on the Cloud, where computing resources are abundant. The H2020 IoTwins project leverages the digital twin concept to implement virtual representation of physical assets (e.g., machine parts, machines, production/control processes) and deliver a software platform that will help enterprises, and in particular SMEs, to build highly innovative, AI-based services that exploit the potential of IoT/Edge/Cloud computing paradigms. In this paper, we discuss the design principles of the IoTwins reference architecture, delving into technical details of its components and offered functionalities, and propose an exemplary software implementation

    Distributed Computing Framework Based on Software Containers for Heterogeneous Embedded Devices

    Get PDF
    The Internet of Things (IoT) is represented by millions of everyday objects enhanced with sensing and actuation capabilities that are connected to the Internet. Traditional approaches for IoT applications involve sending data to cloud servers for processing and storage, and then relaying commands back to devices. However, this approach is no longer feasible due to the rapid growth of IoT in the network: the vast amount of devices causes congestion; latency and security requirements demand that data is processed close to the devices that produce and consume it; and the processing and storage resources of devices remain underutilized. Fog Computing has emerged as a new paradigm where multiple end-devices form a shared pool of resources where distributed applications are deployed, taking advantage of local capabilities. These devices are highly heterogeneous, with varying hardware and software platforms. They are also resource-constrained, with limited availability of processing and storage resources. Realizing the Fog requires a software framework that simplifies the deployment of distributed applications, while at the same time overcoming these constraints. In Cloud-based deployments, software containers provide a lightweight solution to simplify the deployment of distributed applications. However, Cloud hardware is mostly homogeneous and abundant in resources. This work establishes the feasibility of using Docker Swarm -- an existing container-based software framework -- for the deployment of distributed applications on IoT devices. This is realized with the use of custom tools to enable minimal-size applications compatible with heterogeneous devices; automatic configuration and formation of device Fog; remote management and provisioning of devices. The proposed framework has significant advantages over the state of the art, namely, it supports Fog-based distributed applications, it overcomes device heterogeneity and it simplifies device initialization

    A review on orchestration distributed systems for IoT smart services in fog computing

    Get PDF
    This paper provides a review of orchestration distributed systems for IoT smart services in fog computing. The cloud infrastructure alone cannot handle the flow of information with the abundance of data, devices and interactions. Thus, fog computing becomes a new paradigm to overcome the problem. One of the first challenges was to build the orchestration systems to activate the clouds and to execute tasks throughout the whole system that has to be considered to the situation in the large scale of geographical distance, heterogeneity and low latency to support the limitation of cloud computing. Some problems exist for orchestration distributed in fog computing are to fulfil with high reliability and low-delay requirements in the IoT applications system and to form a larger computer network like a fog network, at different geographic sites. This paper reviewed approximately 68 articles on orchestration distributed system for fog computing. The result shows the orchestration distribute system and some of the evaluation criteria for fog computing that have been compared in terms of Borg, Kubernetes, Swarm, Mesos, Aurora, heterogeneity, QoS management, scalability, mobility, federation, and interoperability. The significance of this study is to support the researcher in developing orchestration distributed systems for IoT smart services in fog computing focus on IR4.0 national agend
    • …
    corecore