892 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Segmentation of Skin Lesions and their Attributes Using Multi-Scale Convolutional Neural Networks and Domain Specific Augmentations

    Full text link
    Computer-aided diagnosis systems for classification of different type of skin lesions have been an active field of research in recent decades. It has been shown that introducing lesions and their attributes masks into lesion classification pipeline can greatly improve the performance. In this paper, we propose a framework by incorporating transfer learning for segmenting lesions and their attributes based on the convolutional neural networks. The proposed framework is based on the encoder-decoder architecture which utilizes a variety of pre-trained networks in the encoding path and generates the prediction map by combining multi-scale information in decoding path using a pyramid pooling manner. To address the lack of training data and increase the proposed model generalization, an extensive set of novel domain-specific augmentation routines have been applied to simulate the real variations in dermoscopy images. Finally, by performing broad experiments on three different data sets obtained from International Skin Imaging Collaboration archive (ISIC2016, ISIC2017, and ISIC2018 challenges data sets), we show that the proposed method outperforms other state-of-the-art approaches for ISIC2016 and ISIC2017 segmentation task and achieved the first rank on the leader-board of ISIC2018 attribute detection task.Comment: 18 page

    Radiological images and machine learning: trends, perspectives, and prospects

    Full text link
    The application of machine learning to radiological images is an increasingly active research area that is expected to grow in the next five to ten years. Recent advances in machine learning have the potential to recognize and classify complex patterns from different radiological imaging modalities such as x-rays, computed tomography, magnetic resonance imaging and positron emission tomography imaging. In many applications, machine learning based systems have shown comparable performance to human decision-making. The applications of machine learning are the key ingredients of future clinical decision making and monitoring systems. This review covers the fundamental concepts behind various machine learning techniques and their applications in several radiological imaging areas, such as medical image segmentation, brain function studies and neurological disease diagnosis, as well as computer-aided systems, image registration, and content-based image retrieval systems. Synchronistically, we will briefly discuss current challenges and future directions regarding the application of machine learning in radiological imaging. By giving insight on how take advantage of machine learning powered applications, we expect that clinicians can prevent and diagnose diseases more accurately and efficiently.Comment: 13 figure

    A Deep Multi-task Learning Approach to Skin Lesion Classification

    Full text link
    Skin lesion identification is a key step toward dermatological diagnosis. When describing a skin lesion, it is very important to note its body site distribution as many skin diseases commonly affect particular parts of the body. To exploit the correlation between skin lesions and their body site distributions, in this study, we investigate the possibility of improving skin lesion classification using the additional context information provided by body location. Specifically, we build a deep multi-task learning (MTL) framework to jointly optimize skin lesion classification and body location classification (the latter is used as an inductive bias). Our MTL framework uses the state-of-the-art ImageNet pretrained model with specialized loss functions for the two related tasks. Our experiments show that the proposed MTL based method performs more robustly than its standalone (single-task) counterpart.Comment: AAAI 2017 Joint Workshop on Health Intelligence W3PHIAI 2017 (W3PHI & HIAI), San Francisco, CA, 201

    A Detection and Segmentation Architecture for Skin Lesion Segmentation on Dermoscopy Images

    Full text link
    This report summarises our method and validation results for the ISIC Challenge 2018 - Skin Lesion Analysis Towards Melanoma Detection - Task 1: Lesion Segmentation. We present a two-stage method for lesion segmentation with optimised training method and ensemble post-process. Our method achieves state-of-the-art performance on lesion segmentation and we win the first place in ISIC 2018 task1.Comment: 5 pages, 9 figures, Ranked 1st place in ISIC 2018 task1, title updated and results adde

    Propagating Uncertainty in Multi-Stage Bayesian Convolutional Neural Networks with Application to Pulmonary Nodule Detection

    Full text link
    Motivated by the problem of computer-aided detection (CAD) of pulmonary nodules, we introduce methods to propagate and fuse uncertainty information in a multi-stage Bayesian convolutional neural network (CNN) architecture. The question we seek to answer is "can we take advantage of the model uncertainty provided by one deep learning model to improve the performance of the subsequent deep learning models and ultimately of the overall performance in a multi-stage Bayesian deep learning architecture?". Our experiments show that propagating uncertainty through the pipeline enables us to improve the overall performance in terms of both final prediction accuracy and model confidence.Comment: NIPS Workshop on Bayesian Deep Learning, 201

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification

    Full text link
    Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning Generative Adversarial Networks (GANs). Furthermore, we show that generated medical images can be used for synthetic data augmentation, and improve the performance of CNN for medical image classification. Our novel method is demonstrated on a limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). We first exploit GAN architectures for synthesizing high quality liver lesion ROIs. Then we present a novel scheme for liver lesion classification using CNN. Finally, we train the CNN using classic data augmentation and our synthetic data augmentation and compare performance. In addition, we explore the quality of our synthesized examples using visualization and expert assessment. The classification performance using only classic data augmentation yielded 78.6% sensitivity and 88.4% specificity. By adding the synthetic data augmentation the results increased to 85.7% sensitivity and 92.4% specificity. We believe that this approach to synthetic data augmentation can generalize to other medical classification applications and thus support radiologists' efforts to improve diagnosis.Comment: Preprint submitted to Neurocomputin

    Detecting Scatteredly-Distributed, Small, andCritically Important Objects in 3D OncologyImaging via Decision Stratification

    Full text link
    Finding and identifying scatteredly-distributed, small, and critically important objects in 3D oncology images is very challenging. We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes (OSLNs), which has not been studied before as a computational task. Determining and delineating the spread of OSLNs is essential in defining the corresponding resection/irradiating regions for the downstream workflows of surgical resection and radiotherapy of various cancers. For patients who are treated with radiotherapy, this task is performed by experienced radiation oncologists that involves high-level reasoning on whether LNs are metastasized, which is subject to high inter-observer variations. In this work, we propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories. This is motivated by the observation that each category has its own different underlying distributions in appearance, size and other characteristics. Two separate detection-by-segmentation networks are trained per category and fused. To further reduce false positives (FP), we present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches. Our method is evaluated on a dataset of 141 esophageal cancer patients with PET and CT modalities (the largest to-date). Our results significantly improve the recall from 45%45\% to 67%67\% at 33 FPs per patient as compared to previous state-of-the-art methods. The highest achieved OSLN recall of 0.8280.828 is clinically relevant and valuable.Comment: 14 pages, 4 Figure

    Conditional Generative Refinement Adversarial Networks for Unbalanced Medical Image Semantic Segmentation

    Full text link
    We propose a new generative adversarial architecture to mitigate imbalance data problem in medical image semantic segmentation where the majority of pixels belongs to a healthy region and few belong to lesion or non-health region. A model trained with imbalanced data tends to bias toward healthy data which is not desired in clinical applications and predicted outputs by these networks have high precision and low sensitivity. We propose a new conditional generative refinement network with three components: a generative, a discriminative, and a refinement network to mitigate unbalanced data problem through ensemble learning. The generative network learns to a segment at the pixel level by getting feedback from the discriminative network according to the true positive and true negative maps. On the other hand, the refinement network learns to predict the false positive and the false negative masks produced by the generative network that has significant value, especially in medical application. The final semantic segmentation masks are then composed by the output of the three networks. The proposed architecture shows state-of-the-art results on LiTS-2017 for liver lesion segmentation, and two microscopic cell segmentation datasets MDA231, PhC-HeLa. We have achieved competitive results on BraTS-2017 for brain tumour segmentation
    corecore