391 research outputs found

    The cognitive emotion process

    Get PDF
    Different theories of emotions have been introduced since the 19th century. Even though a large number of apparent differences between these theories exist, there is a broad consensus today that emotions consist of multiple components such as cognition, physiology, motivation, and subjectively perceived feeling. Appraisal theories of emotions, such as the Component Process Model (CPM) by Klaus Scherer, emphasize that the cognitive evaluation of a stimulus or event is the driving component of the emotion process. It is believed to cause changes in all other components and hence to differentiate emotion states. To test the CPM and gain more insights into the multi-componential emotion process, the present thesis examines two emotion sub-processes – the link between the cognitive and the feeling component (study 1) and the link between the cognitive and the physiological component (study 2) – by using different predictive modeling approaches. In study 1, four theoretically informed models were implemented. The models use a weighted distance metric based on an emotion prototype approach to predict the perceived emotion of participants from self-reported cognitive appraisals. Moreover, they incorporate different weighting functions with weighting parameters that were either derived from theory or estimated from empirical data. The results substantiate the examined link based on the predictive performance of the models. In line with the CPM, the preferred model weighted the appraisal evaluations differently in the distance metric. However, the data-derived weighting parameters of this model deviate from theoretically proposed ones. Study 2 analyzed the link between cognition and physiology by predicting self-reported appraisal dimensions from a large set of physiological features (calculated from different physiological responses to emotional videos) using different linear and non-linear machine learning algorithms. Based on the predictive performance of the models, the study is able to confirm that most cognitive evaluations were interlinked with different physiological responses. The comparison of the different algorithms and the application of methods for interpretable machine learning showed that the relation between these two components is best represented by a non-linear model and that the studied link seems to vary among physiological signals and cognitive dimensions. Both studies substantiate the assumption that the cognitive appraisal process is interlinked with physiology and subjective feelings, accentuating the relevance of cognition in emotion as assumed in appraisal theory. They also demonstrate how computational emotion modeling can be applied in basic research on emotions

    HyperCell: A Bio-inspired Design Framework for Real-time Interactive Architectures

    Get PDF
    This pioneering research focuses on Biomimetic Interactive Architecture using “Computation”, “Embodiment”, and “Biology” to generate an intimate embodied convergence to propose a novel rule-based design framework for creating organic architectures composed of swarm-based intelligent components. Furthermore, the research boldly claims that Interactive Architecture should emerge as the next truly Organic Architecture. As the world and society are dynamically changing, especially in this digital era, the research dares to challenge the Utilitas, Firmitas, and Venustas of the traditional architectural Weltanschauung, and rejects them by adopting the novel notion that architecture should be dynamic, fluid, and interactive. This project reflects a trajectory from the 1960’s with the advent of the avant-garde architectural design group, Archigram, and its numerous intriguing and pioneering visionary projects. Archigram’s non-standard, mobile, and interactive projects profoundly influenced a new generation of architects to explore the connection between technology and their architectural projects. This research continues this trend of exploring novel design thinking and the framework of Interactive Architecture by discovering the interrelationship amongst three major topics: “Computation”, “Embodiment”, and “Biology”. The project aims to elucidate pioneering research combining these three topics in one discourse: “Bio-inspired digital architectural design”. These three major topics will be introduced in this Summary.   “Computation”, is any type of calculation that includes both arithmetical and nonarithmetical steps and follows a well-defined model understood and described as, for example, an algorithm. But, in this research, refers to the use of data storage, parametric design application, and physical computing for developing informed architectural designs. “Form” has always been the most critical focus in architectural design, and this focus has also been a major driver behind the application computational design in Architecture. Nonetheless, this research will interpret the term “Form” in architecture as a continual “information processor” rather than the result of information processing. In other words, “Form” should not be perceived only as an expressive appearance based computational outcome but rather as a real-time process of information processing, akin to organic “Formation”. Architecture embodying kinetic ability for adjusting or changing its shape with the ability to process the surroundings and feedback in accordance with its free will with an inherent interactive intelligent movement of a living body. Additionally, it is also crucial to address the question of whether computational technologies are being properly harnessed, if they are only used for form-generating purposes in architecture design, or should this be replaced with real-time information communication and control systems to produce interactive architectures, with embodied computation abilities?   “Embodiment” in the context of this research is embedded in Umberto Eco’s vision on Semiotics, theories underlying media studies in Marshall McLuhan’s “Body Extension” (McLuhan, 1964), the contemporary philosophical thought of “Body Without Organs” (Gilles Deleuze and FĂ©lix Guattari, 1983), the computational Logic of ‘Swarm Behavior’ and the philosophical notion of “Monadology” proposed by Gottfried Leibniz (Leibniz, 1714). Embodied computation and design are predominant today within the wearable computing and smart living domains, which combine Virtual and Real worlds. Technical progress and prowess in VR development also contribute to advancing 3D smart architectural design and display solutions. The proposed ‘Organic body-like architectural spaces’ emphasize upon the realization of a body-like interactive space. Developing Interactive Architecture will imply eliciting the collective intelligence prevalent in nature and the virtual world of Big Data. Interactive Architecture shall thus embody integrated Information exchange protocols and decision-making systems in order to possess organic body-like qualities.   “Biology”, in this research explores biomimetic principles intended to create purposedriven kinetic and organic architecture. This involves a detailed study/critique of organic architecture, generating organic shapes, performance optimization based digital fabrication techniques and kinetic systems. A holistic bio-inspired architecture embodies multiple performance criteria akin to natural systems, which integrate structural, infrastructure performances throughout the growth of an organic body. Such a natural morphogenesis process of architectural design explores what Janine M. Benyus described as “learning the natural process”. Profoundly influenced by the processes behind morphogenesis, the research further explores Evolutionary Development Biology (Evo-Devo) explaining how embryological regulation strongly affect the resulting formations. Evo-Devo in interactive architecture implies the development of architecture based on three fundamental principles: “Simple to Complex”, “Geometric Information Distribution”, and “On/Off Switch and Trigger.” The research seeks to create a relatively intelligent architectural body, and the tactile interactive spatial environment by applying the extracted knowledge from the study of the aforementioned principles of Evo-Devo in the following fashion: A. Extract a Self-Similar Componential System based approach from the “Simple to Complex” principle of Evo-Devo B. Extract the idea of “Collective Intelligence” from “Geometric information Distribution” principle of Evo-Devo C. Extract the principle of “Assembly Regulation” from “On/Off switch and trigger” principle of Evo-Devo The “HyperCell” research, through an elaborate investigation on the three aforementioned topics, develops a design framework for developing real-time adaptive spatial systems. HyperCell does this, by developing a system of transformable cubic elements which can self-organize, adapt and interact in real-time. These Hypercells shall comprise an organic space which can adjust itself in relation to our human bodies. The furniture system is literally reified and embodied to develop an intra-active space that proactively provokes human movement. The space thus acquires an emotive dimension and can become your pet, partner, or even friend, and might also involve multiple usabilities of the same space. The research and its progression were also had actively connected with a 5-year collaborative European Culture project: “MetaBody”. The research thus involves exploration of Interactive Architecture from the following perspectives: architectural design, digital architectural history trajectory, computational technology, philosophical discourse related to the embodiment, media and digital culture, current VR and body-related technology, and Evolutionary Developmental Biology. “HyperCell” will encourage young architects to pursue interdisciplinary design initiatives via the fusion of computational design, embodiment, and biology for developing bio-inspired organic architectures

    Affective Motivational Collaboration Theory

    Get PDF
    Existing computational theories of collaboration explain some of the important concepts underlying collaboration, e.g., the collaborators\u27 commitments and communication. However, the underlying processes required to dynamically maintain the elements of the collaboration structure are largely unexplained. Our main insight is that in many collaborative situations acknowledging or ignoring a collaborator\u27s affective state can facilitate or impede the progress of the collaboration. This implies that collaborative agents need to employ affect-related processes that (1) use the collaboration structure to evaluate the status of the collaboration, and (2) influence the collaboration structure when required. This thesis develops a new affect-driven computational framework to achieve these objectives and thus empower agents to be better collaborators. Contributions of this thesis are: (1) Affective Motivational Collaboration (AMC) theory, which incorporates appraisal processes into SharedPlans theory. (2) New computational appraisal algorithms based on collaboration structure. (3) Algorithms such as goal management, that use the output of appraisal to maintain collaboration structures. (4) Implementation of a computational system based on AMC theory. (5) Evaluation of AMC theory via two user studies to a) validate our appraisal algorithms, and b) investigate the overall functionality of our framework within an end-to-end system with a human and a robot

    Defining leadership that fosters creativity in virtual work – Descriptive interpretative concept analysis

    Get PDF
    Tapping common creativity of people inside and outside organizational, geo- graphical and technological boundaries is a big challenge for leaders in virtual work to add value in value chains. The object of this article is – through the descriptive interpretative concept analysis and inductive epistemological approach – to define leadership that fosters creativity in virtual work. The outcome is a map of mutual connections of the concepts of virtuality, creativity and transformational, emotional and complexity leadership. The findings suggest that effective leadership in virtual work requires broad understanding of virtuality and creativity and spaces and relations between people. The analysis indicates benefits from integral theoretical pluralism, i.e. from utilizing several theoretical approaches in developing leadership theory for virtuality at work, and offers thoughts for creating new concepts and developing leadership towards sustainability in organizations.Virtuaalityön johtajilla on iso haaste valjastaa organisaatioiden sisällä ja organisaatio-, maantieteellisten ja teknologisten rajojen ulkopuolella toimivien ihmisten yhteinen luovuus arvon tuottamiseen arvo- ketjuissa. Tämän artikkelin tarkoituksena on kuvailevan tulkitsevan käsiteanalyysin ja induktiivisen epistemologisen lähestymistavan avulla määritellä johtaminen, joka edistää luovuutta virtuaalityössä. Analyysin tuloksena on kartta virtuaalisuuden, luovuuden, transformaalisen johtamisen, tunneälyjohtamisen ja kompleksisen johtamisen käsitteiden keskinäisistä yhteyksistä. Tulosten perusteella luovaa virtuaalista yhteistyötä edistävässä johtamisessa virtuaalisuus, luovuus ja ihmisten väliset tilat ja suhteet on ymmärrettävä laajasti. Analyysi antaa viitteitä myös teoreettisesta pluralismista eli usean teoreettisen viitekehyksen käytön hyödyllisyydestä virtuaalityön johtamisen teorian kehittämisessä sekä tarjoaa ajatuksia uusien käsitteiden luomiseen ja organisaatioiden kestä- vän kehityksen johtamisen kehittämisee

    Unobtrusive Assessment Of Student Engagement Levels In Online Classroom Environment Using Emotion Analysis

    Get PDF
    Measuring student engagement has emerged as a significant factor in the process of learning and a good indicator of the knowledge retention capacity of the student. As synchronous online classes have become more prevalent in recent years, gauging a student\u27s attention level is more critical in validating the progress of every student in an online classroom environment. This paper details the study on profiling the student attentiveness to different gradients of engagement level using multiple machine learning models. Results from the high accuracy model and the confidence score obtained from the cloud-based computer vision platform - Amazon Rekognition were then used to statistically validate any correlation between student attentiveness and emotions. This statistical analysis helps to identify the significant emotions that are essential in gauging various engagement levels. This study identified emotions like calm, happy, surprise, and fear are critical in gauging the student\u27s attention level. These findings help in the earlier detection of students with lower attention levels, consequently helping the instructors focus their support and guidance on the students in need, leading to a better online learning environment
    • 

    corecore