58,155 research outputs found

    Multi-criteria decision making support tools for maintenance of marine machinery systems

    Get PDF
    PhD ThesisFor ship systems to remain reliable and safe they must be effectively maintained through a sound maintenance management system. The three major elements of maintenance management systems are; risk assessment, maintenance strategy selection and maintenance task interval determination. The implementation of these elements will generally determine the level of ship system safety and reliability. Reliability Centred Maintenance (RCM) is one method that can be used to optimise maintenance management systems. However the tools used within the framework of the RCM methodology have limitations which may compromise the efficiency of RCM in achieving the desired results. This research presents the development of tools to support the RCM methodology and improve its effectiveness in marine maintenance system applications. Each of the three elements of the maintenance management system has been considered in turn. With regard to risk assessment, two Multi-Criteria Decision Making techniques (MCDM); Vlsekriterijumska Optimizacija Ikompromisno Resenje, meaning: Multi-criteria Optimization and Compromise Solution (VIKOR) and Compromise Programming (CP) have been integrated into Failure Mode and Effects Analysis (FMEA) along with a novel averaging technique which allows the use of incomplete or imprecise failure data. Three hybrid MCDM techniques have then been compared for maintenance strategy selection; an integrated Delphi-Analytical Hierarchy Process (AHP) methodology, an integrated Delphi-AHP-PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluation) methodology and an integrated Delphi-AHP-TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methodology. Maintenance task interval determination has been implemented using a MCDM framework integrating a delay time model to determine the optimum inspection interval and using the age replacement model for the scheduled replacement tasks. A case study based on a marine Diesel engine has been developed with input from experts in the field to demonstrate the effectiveness of the proposed methodologies.Tertiary Education Trust Fund (TETFUND), a scholarship body of the Federal Republic of Nigeria for providing the fund for this research. My gratitude also goes to Federal University of Petroleum Resource, Effurun, Nigeria for giving me the opportunity to be a beneficiary of the scholarship

    Elements of maintenance system and tools for implementation within framework of Reliability Centred Maintenance- A review

    Get PDF
    For plant systems to remain reliable and safe they must be effectively maintained through a sound maintenance management system. The three major elements of maintenance management systems are; risk assessment, maintenance strategy selection and maintenance task interval determination. The implementation of these elements will generally determine the level of plant system safety and reliability. Reliability Centred Maintenance (RCM) is one method that can be used to optimise maintenance management systems. This paper discusses the three major elements of a maintenance system, tools utilised within the framework of RCM for performing these tasks and some of the limitations of the various tools. Each of the three elements of the maintenance management system has been considered in turn. The information will equip maintenance practitioners with basic knowledge of tools for maintenance optimisation and stimulate researchers with respect to developing alternative tools for application to plant systems for improved safety and reliability. The research findings revealed that there is a need for researchers to develop alternative tools within the framework of RCM which are efficient in terms of processing and avoid the limitations of existing methodologies in order to have a safer and more reliable plant system.

    Optimisation of inspection policy for multi-line production systems

    Get PDF
    This paper develops a simulation model to determine the cost-optimum inspection policy for a multi-line production system taking account of simultaneous downtime. The machines in the multi-line system are subject to a two stage failure process that is modelled using the delay-time concept. Our study indicates that: consecutive inspection of lines with priority for failure repair is cost-optimal, with a cost reduction of 61% compared to a ‘run-to-failure’ policy; and maintainers need to be responsive to operational requirements. Our ideas are developed in the context of a case study of a plant with three parallel lines, one of which is on cold-standby. Keywords: maintenance; delay-time model; simulation; production; parallel lines; manufacturing; preventive maintenance

    An availability model based on a three-stage failure process under age based replacement

    Get PDF
    This paper proposes a joint optimal policy of inspection and age based replacement based on a three-stage failure process to jointly optimize the inspection and replacement intervals. The three-stage failure process divides the failure process of system into three stages: namely normal, minor defective and severe defective. When the minor defective stage is identified, the subsequent inspection interval is halved. Once identifying the severe defective stage, the maintenance action is carried out immediately. The system is replaced once it reaches the certain age. Finally, a numerical example is presented to demonstrate the efficiency of the proposed model
    • …
    corecore