147 research outputs found

    Automatic characterization and generation of music loops and instrument samples for electronic music production

    Get PDF
    Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation.Repurposing audio material to create new music - also known as sampling - was a foundation of electronic music and is a fundamental component of this practice. Currently, large-scale databases of audio offer vast collections of audio material for users to work with. The navigation on these databases is heavily focused on hierarchical tree directories. Consequently, sound retrieval is tiresome and often identified as an undesired interruption in the creative process. We address two fundamental methods for navigating sounds: characterization and generation. Characterizing loops and one-shots in terms of instruments or instrumentation allows for organizing unstructured collections and a faster retrieval for music-making. The generation of loops and one-shot sounds enables the creation of new sounds not present in an audio collection through interpolation or modification of the existing material. To achieve this, we employ deep-learning-based data-driven methodologies for classification and generation

    Application of the PE method to up-slope sound propagation

    Get PDF

    Proceedings of the 19th Sound and Music Computing Conference

    Get PDF
    Proceedings of the 19th Sound and Music Computing Conference - June 5-12, 2022 - Saint-Étienne (France). https://smc22.grame.f

    Ray tracing in a turbulent, shallow-water channel

    Get PDF

    Scattering by two spheres: Theory and experiment

    Get PDF

    Choreographing the extended agent : performance graphics for dance theater

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (v. 2, leaves 448-458).The marriage of dance and interactive image has been a persistent dream over the past decades, but reality has fallen far short of potential for both technical and conceptual reasons. This thesis proposes a new approach to the problem and lays out the theoretical, technical and aesthetic framework for the innovative art form of digitally augmented human movement. I will use as example works a series of installations, digital projections and compositions each of which contains a choreographic component - either through collaboration with a choreographer directly or by the creation of artworks that automatically organize and understand purely virtual movement. These works lead up to two unprecedented collaborations with two of the greatest choreographers working today; new pieces that combine dance and interactive projected light using real-time motion capture live on stage. The existing field of"dance technology" is one with many problems. This is a domain with many practitioners, few techniques and almost no theory; a field that is generating "experimental" productions with every passing week, has literally hundreds of citable pieces and no canonical works; a field that is oddly disconnected from modern dance's history, pulled between the practical realities of the body and those of computer art, and has no influence on the prevailing digital art paradigms that it consumes.(cont.) This thesis will seek to address each of these problems: by providing techniques and a basis for "practical theory"; by building artworks with resources and people that have never previously been brought together, in theaters and in front of audiences previously inaccessible to the field; and by proving through demonstration that a profitable and important dialogue between digital art and the pioneers of modern dance can in fact occur. The methodological perspective of this thesis is that of biologically inspired, agent-based artificial intelligence, taken to a high degree of technical depth. The representations, algorithms and techniques behind such agent architectures are extended and pushed into new territory for both interactive art and artificial intelligence. In particular, this thesis ill focus on the control structures and the rendering of the extended agents' bodies, the tools for creating complex agent-based artworks in intense collaborative situations, and the creation of agent structures that can span live image and interactive sound production. Each of these parts becomes an element of what it means to "choreograph" an extended agent for live performance.Marc Downie.Ph.D
    corecore