268 research outputs found

    Joint Learning of Deep Texture and High-Frequency Features for Computer-Generated Image Detection

    Full text link
    Distinguishing between computer-generated (CG) and natural photographic (PG) images is of great importance to verify the authenticity and originality of digital images. However, the recent cutting-edge generation methods enable high qualities of synthesis in CG images, which makes this challenging task even trickier. To address this issue, a joint learning strategy with deep texture and high-frequency features for CG image detection is proposed. We first formulate and deeply analyze the different acquisition processes of CG and PG images. Based on the finding that multiple different modules in image acquisition will lead to different sensitivity inconsistencies to the convolutional neural network (CNN)-based rendering in images, we propose a deep texture rendering module for texture difference enhancement and discriminative texture representation. Specifically, the semantic segmentation map is generated to guide the affine transformation operation, which is used to recover the texture in different regions of the input image. Then, the combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms, which refines intermediate features and facilitates trace exploration in spatial and channel dimensions respectively. Extensive experiments on two public datasets and a newly constructed dataset with more realistic and diverse images show that the proposed approach outperforms existing methods in the field by a clear margin. Besides, results also demonstrate the detection robustness and generalization ability of the proposed approach to postprocessing operations and generative adversarial network (GAN) generated images

    D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and Localization

    Full text link
    Recently, many detection methods based on convolutional neural networks (CNNs) have been proposed for image splicing forgery detection. Most of these detection methods focus on the local patches or local objects. In fact, image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints. However, some specific image contents are hardly retained by CNN-based detection networks, but if included, would improve the detection accuracy of the networks. To resolve these issues, we propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder. The unfixed encoder autonomously learns the image fingerprints that differentiate between the tampered and non-tampered regions, whereas the fixed encoder intentionally provides the direction information that assists the learning and detection of the network. This dual-encoder is followed by a spatial pyramid global-feature extraction module that expands the global insight of D-Unet for classifying the tampered and non-tampered regions more accurately. In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection, without requiring pre-training or training on a large number of forgery images. Moreover, it was stably robust to different attacks.Comment: 13 pages, 13 figure
    • …
    corecore