3,038 research outputs found

    A multi-biometric iris recognition system based on a deep learning approach

    Get PDF
    YesMultimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris- V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person

    UBSegNet: Unified Biometric Region of Interest Segmentation Network

    Full text link
    Digital human identity management, can now be seen as a social necessity, as it is essentially required in almost every public sector such as, financial inclusions, security, banking, social networking e.t.c. Hence, in today's rampantly emerging world with so many adversarial entities, relying on a single biometric trait is being too optimistic. In this paper, we have proposed a novel end-to-end, Unified Biometric ROI Segmentation Network (UBSegNet), for extracting region of interest from five different biometric traits viz. face, iris, palm, knuckle and 4-slap fingerprint. The architecture of the proposed UBSegNet consists of two stages: (i) Trait classification and (ii) Trait localization. For these stages, we have used a state of the art region based convolutional neural network (RCNN), comprising of three major parts namely convolutional layers, region proposal network (RPN) along with classification and regression heads. The model has been evaluated over various huge publicly available biometric databases. To the best of our knowledge this is the first unified architecture proposed, segmenting multiple biometric traits. It has been tested over around 5000 * 5 = 25,000 images (5000 images per trait) and produces very good results. Our work on unified biometric segmentation, opens up the vast opportunities in the field of multiple biometric traits based authentication systems.Comment: 4th Asian Conference on Pattern Recognition (ACPR 2017

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks
    • …
    corecore