103 research outputs found

    Snake-Like Robots for Minimally Invasive, Single Port, and Intraluminal Surgeries

    Full text link
    The surgical paradigm of Minimally Invasive Surgery (MIS) has been a key driver to the adoption of robotic surgical assistance. Progress in the last three decades has led to a gradual transition from manual laparoscopic surgery with rigid instruments to robot-assisted surgery. In the last decade, the increasing demand for new surgical paradigms to enable access into the anatomy without skin incision (intraluminal surgery) or with a single skin incision (Single Port Access surgery - SPA) has led researchers to investigate snake-like flexible surgical devices. In this chapter, we first present an overview of the background, motivation, and taxonomy of MIS and its newer derivatives. Challenges of MIS and its newer derivatives (SPA and intraluminal surgery) are outlined along with the architectures of new snake-like robots meeting these challenges. We also examine the commercial and research surgical platforms developed over the years, to address the specific functional requirements and constraints imposed by operations in confined spaces. The chapter concludes with an evaluation of open problems in surgical robotics for intraluminal and SPA, and a look at future trends in surgical robot design that could potentially address these unmet needs.Comment: 41 pages, 18 figures. Preprint of article published in the Encyclopedia of Medical Robotics 2018, World Scientific Publishing Company www.worldscientific.com/doi/abs/10.1142/9789813232266_000

    Current status and future perspectives in laparoendoscopic single-site and natural orifice transluminal endoscopic urological surgery

    Get PDF
    Objective of this study is to provide an evidence-based analysis of the current status and future perspectives of scarless urological surgery. A PubMed search has been performed for all relevant urological literature regarding natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single-site surgery (LESS). In addition, experience with LESS and NOTES at our own institution has been considered. All clinical and investigative reports for LESS and NOTES procedures in the urological literature have been considered. A wide variety of clinical procedures in urology have been successfully completed by using LESS techniques. Thus far, experience with NOTES has largely been investigational, although early clinical reports are emerging. Further development of instrumentation and platforms is necessary for both techniques to become more widely adopted throughout the urological community

    Towards clinical application of continuum active micro-endoscope robot based on EAP actuation.

    No full text
    International audienceContinuum robots have shown astounding abilities in the medical field as numerous robotized devices have emerged. For instance, colonoscopes, arthroscopes, catheters, endoscopes, and other medical tools have been developed. Their ability to navigate through complex anatomy and narrow spaces represent the attractive features of continuum robots. We foresee to improve their usefulness for Minimally Invasive Surgery (MIS) and Natural Orifice Transluminal Endoscopic Surgery (NOTES). These robots may be downscaled depending on the target application, e.g., from endoscopy to neurosurgery. Shorter hospital stay, less pain and scarring, and quicker recovery might then be provided to the patient. Recently, active cannulas have been used for endonasal skull base surgery for pituitary gland cancer as depicted in Figure 1a, transurethral laser prostate surgery, laser surgery, beating heart surgery, and neurosurgery. Thus, we are interested in developing a micro-endoscope whether for diagnosis or laser surger

    Laparoendoscopic single-site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature

    Get PDF
    CONTEXT: Natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single-site surgery (LESS) have been developed to benefit patients by enabling surgeons to perform scarless surgery. OBJECTIVE: To summarize and critically analyze the available evidence on the current status and future perspectives of LESS and NOTES in urology. EVIDENCE ACQUISITION: A comprehensive electronic literature search was conducted in June 2010 using the Medline database to identify all publications relating to NOTES and LESS in urology. EVIDENCE SYNTHESIS: In urology, NOTES has been completed experimentally via transgastric, transvaginal, transcolonic, and transvesical routes. Initial clinical experience has shown that NOTES urologic surgery using currently available instruments is indeed possible. Nevertheless, because of the immaturity of the instrumentation, early cases have demanded high technical virtuosity. LESS can safely and effectively be performed in a variety of urologic settings. As clinical experience increases, expanding indications are expected to be documented and the efficacy of the procedure to improve. So far, the quality of evidence of all available studies remains low, mostly being small case series or case-control studies from selected centers. Thus, the only objective benefit of LESS remains the improved cosmetic outcome. Prospective, randomized studies are largely awaited to determine which LESS procedures will be established and which are unlikely to stand the test of time. Technology advances hold promise to minimize the challenging technical nature of scarless surgery. In this respect, robotics is likely to drive a major paradigm shift in the development of LESS and NOTES. CONCLUSIONS: NOTES is still an investigational approach in urology. LESS has proven to be immediately applicable in the clinical field, being safe and feasible in the hands of experienced laparoscopic surgeons. Development of instrumentation and application of robotic technology are expected to define the actual role of these techniques in minimally invasive urologic surgery

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    A Continuum Robot and Control Interface for Surgical Assist in Fetoscopic Interventions

    Get PDF
    Twin-twin transfusion syndrome requires interventional treatment using a fetoscopically introduced laser to sever the shared blood supply between the fetuses. This is a delicate procedure relying on small instrumentation with limited articulation to guide the laser tip and a narrow field of view to visualize all relevant vascular connections. In this letter, we report on a mechatronic design for a comanipulated instrument that combines concentric tube actuation to a larger manipulator constrained by a remote centre of motion. A stereoscopic camera is mounted at the distal tip and used for imaging. Our mechanism provides enhanced dexterity and stability of the imaging device. We demonstrate that the imaging system can be used for computing geometry and enhancing the view at the operating site. Results using electromagnetic sensors for verification and comparison to visual odometry from the distal sensor show that our system is promising and can be developed further for multiple clinical needs in fetoscopic procedures

    Design and Modeling of Multi-Arm Continuum Robots

    Get PDF
    Continuum robots are snake-like systems able to deliver optimal therapies to pathologies deep inside the human cavity by following 3D complex paths. They show promise when anatomical pathways need to be traversed thanks to their enhanced flexibility and dexterity and show advantages when deployed in the field of single-port surgery. This PhD thesis concerns the development and modelling of multi-arm and hybrid continuum robots for medical interventions. The flexibility and steerability of the robot’s end-effector are achieved through concentric tube technology and push/pull technology. Medical robotic prototypes have been designed as proof of concepts and testbeds of the proposed theoretical works.System design considers the limitations and constraints that occur in the surgical procedures for which the systems were proposed for. Specifically, two surgical applications are considered. Our first prototype was designed to deliver multiple tools to the eye cavity for deep orbital interventions focusing on a currently invasive intervention named Optic Nerve Sheath Fenestration (ONSF). This thesis presents the end-to-end design, engineering and modelling of the prototype. The developed prototype is the first suggested system to tackle the challenges (limited workspace, need for enhanced flexibility and dexterity, danger for harming tissue with rigid instruments, extensive manipulation of the eye) arising in ONSF. It was designed taking into account the clinical requirements and constraints while theoretical works employing the Cosserat rod theory predict the shape of the continuum end-effector. Experimental runs including ex vivo experimental evaluations, mock-up surgical scenarios and tests with and without loading conditions prove the concept of accessing the eye cavity. Moreover, a continuum robot for thoracic interventions employing push/pull technology was designed and manufactured. The developed system can reach deep seated pathologies in the lungs and access regions in the bronchial tree that are inaccessible with rigid and straight instruments either robotically or manually actuated. A geometrically exact model of the robot that considers both the geometry of the robot and mechanical properties of the backbones is presented. It can predict the shape of the bronchoscope without the constant curvature assumption. The proposed model can also predict the robot shape and micro-scale movements accurately in contrast to the classic geometric model which provides an accurate description of the robot’s differential kinematics for large scale movements
    • …
    corecore