1,617 research outputs found

    Blueprint: descrição da complexidade da regulação metabólica através da reconstrução de modelos metabólicos e regulatórios integrados

    Get PDF
    Tese de doutoramento em Biomedical EngineeringUm modelo metabólico consegue prever o fenótipo de um organismo. No entanto, estes modelos podem obter previsões incorretas, pois alguns processos metabólicos são controlados por mecanismos reguladores. Assim, várias metodologias foram desenvolvidas para melhorar os modelos metabólicos através da integração de redes regulatórias. Todavia, a reconstrução de modelos regulatórios e metabólicos à escala genómica para diversos organismos apresenta diversos desafios. Neste trabalho, propõe-se o desenvolvimento de diversas ferramentas para a reconstrução e análise de modelos metabólicos e regulatórios à escala genómica. Em primeiro lugar, descreve-se o Biological networks constraint-based In Silico Optimization (BioISO), uma nova ferramenta para auxiliar a curação manual de modelos metabólicos. O BioISO usa um algoritmo de relação recursiva para orientar as previsões de fenótipo. Assim, esta ferramenta pode reduzir o número de artefatos em modelos metabólicos, diminuindo a possibilidade de obter erros durante a fase de curação. Na segunda parte deste trabalho, desenvolveu-se um repositório de redes regulatórias para procariontes que permite suportar a sua integração em modelos metabólicos. O Prokaryotic Transcriptional Regulatory Network Database (ProTReND) inclui diversas ferramentas para extrair e processar informação regulatória de recursos externos. Esta ferramenta contém um sistema de integração de dados que converte dados dispersos de regulação em redes regulatórias integradas. Além disso, o ProTReND dispõe de uma aplicação que permite o acesso total aos dados regulatórios. Finalmente, desenvolveu-se uma ferramenta computacional no MEWpy para simular e analisar modelos regulatórios e metabólicos. Esta ferramenta permite ler um modelo metabólico e/ou rede regulatória, em diversos formatos. Esta estrutura consegue construir um modelo regulatório e metabólico integrado usando as interações regulatórias e as ligações entre genes e proteínas codificadas no modelo metabólico e na rede regulatória. Além disso, esta estrutura suporta vários métodos de previsão de fenótipo implementados especificamente para a análise de modelos regulatórios-metabólicos.Genome-Scale Metabolic (GEM) models can predict the phenotypic behavior of organisms. However, these models can lead to incorrect predictions, as certain metabolic processes are controlled by regulatory mechanisms. Accordingly, many methodologies have been developed to extend the reconstruction and analysis of GEM models via the integration of Transcriptional Regulatory Network (TRN)s. Nevertheless, the perspective of reconstructing integrated genome-scale regulatory and metabolic models for diverse prokaryotes is still an open challenge. In this work, we propose several tools to assist the reconstruction and analysis of regulatory and metabolic models. We start by describing BioISO, a novel tool to assist the manual curation of GEM models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis (FBA) to evaluate and guide debugging of in silico phenotype predictions. Hence, this tool can reduce the number of artifacts in GEM models, decreasing the burdens of model refinement and curation. A state-of-the-art repository of TRNs for prokaryotes was implemented to support the reconstruction and integration of TRNs into GEM models. The ProTReND repository comprehends several tools to extract and process regulatory information available in several resources. More importantly, this repository contains a data integration system to unify the regulatory data into standardized TRNs at the genome scale. In addition, ProTReND contains a web application with full access to the regulatory data. Finally, we have developed a new modeling framework to define, simulate and analyze GEnome-scale Regulatory and Metabolic (GERM) models in MEWpy. The GERM model framework can read a GEM model, as well as a TRN from different file formats. This framework assembles a GERM model using the regulatory interactions and Genes-Proteins-Reactions (GPR) rules encoded into the GEM model and TRN. In addition, this modeling framework supports several methods of phenotype prediction designed for regulatory-metabolic models.I would like to thank Fundação para a Ciência e Tecnologia for the Ph.D. studentship I was awarded with (SFRH/BD/139198/2018)

    Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria

    Get PDF
    Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs

    Developments in the tools and methodologies of synthetic biology.

    Get PDF
    Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a body of knowledge from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community

    Binary particle swarm optimization for operon prediction

    Get PDF
    An operon is a fundamental unit of transcription and contains specific functional genes for the construction and regulation of networks at the entire genome level. The correct prediction of operons is vital for understanding gene regulations and functions in newly sequenced genomes. As experimental methods for operon detection tend to be nontrivial and time consuming, various methods for operon prediction have been proposed in the literature. In this study, a binary particle swarm optimization is used for operon prediction in bacterial genomes. The intergenic distance, participation in the same metabolic pathway, the cluster of orthologous groups, the gene length ratio and the operon length are used to design a fitness function. We trained the proper values on the Escherichia coli genome, and used the above five properties to implement feature selection. Finally, our study used the intergenic distance, metabolic pathway and the gene length ratio property to predict operons. Experimental results show that the prediction accuracy of this method reached 92.1%, 93.3% and 95.9% on the Bacillus subtilis genome, the Pseudomonas aeruginosa PA01 genome and the Staphylococcus aureus genome, respectively. This method has enabled us to predict operons with high accuracy for these three genomes, for which only limited data on the properties of the operon structure exists

    Operon prediction using both genome-specific and general genomic information

    Get PDF
    We have carried out a systematic analysis of the contribution of a set of selected features that include three new features to the accuracy of operon prediction. Our analyses have led to a number of new insights about operon prediction, including that (i) different features have different levels of discerning power when used on adjacent gene pairs with different ranges of intergenic distance, (ii) certain features are universally useful for operon prediction while others are more genome-specific and (iii) the prediction reliability of operons is dependent on intergenic distances. Based on these new insights, our newly developed operon-prediction program achieves more accurate operon prediction than the previous ones, and it uses features that are most readily available from genomic sequences. Our prediction results indicate that our (non-linear) decision tree-based classifier can predict operons in a prokaryotic genome very accurately when a substantial number of operons in the genome are already known. For example, the prediction accuracy of our program can reach 90.2 and 93.7% on Bacillus subtilis and Escherichia coli genomes, respectively. When no such information is available, our (linear) logistic function-based classifier can reach the prediction accuracy at 84.6 and 83.3% for E.coli and B.subtilis, respectively

    Network design meets in silico evolutionary biology

    Get PDF
    Cell fate is programmed through gene regulatory networks that perform several calculations to take the appropriate decision. In silico evolutionary optimization mimics the way Nature has designed such gene regulatory networks. In this review we discuss the basic principles of these evolutionary approaches and how they can be applied to engineer synthetic networks. We summarize the basic guidelines to implement an in silico evolutionary design method, the operators for mutation and selection that iteratively drive the network architecture towards a specified dynamical behavior. Interestingly, as it happens in natural evolution, we show the existence of patterns of punctuated evolution. In addition, we highlight several examples of models that have been designed using automated procedures, together with different objective functions to select for the proper behavior. Finally, we briefly discuss the modular designability of gene regulatory networks and its potential application in biotechnology.Supported by fellowships from Generalitat Valenciana and the European Molecular Biology Organization to G. R. and by grants from the Spanish Ministerio de Ciencia e Innovación to J.C. and S.F.E.Peer reviewe

    When one model is not enough: Combining epistemic tools in systems biology

    Get PDF
    In recent years, the philosophical focus of the modeling literature has shifted from descriptions of general properties of models to an interest in different model functions. It has been argued that the diversity of models and their correspondingly different epistemic goals are important for developing intelligible scientific theories (Levins, 2006; Leonelli, 2007). However, more knowledge is needed on how a combination of different epistemic means can generate and stabilize new entities in science. This paper will draw on Rheinberger’s practice-oriented account of knowledge production. The conceptual repertoire of Rheinberger’s historical epistemology offers important insights for an analysis of the modelling practice. I illustrate this with a case study on network modeling in systems biology where engineering approaches are applied to the study of biological systems. I shall argue that the use of multiple means of representations is an essential part of the dynamic of knowledge generation. It is because of – rather than in spite of – the diversity of constraints of different models that the interlocking use of different epistemic means creates a potential for knowledge production
    corecore