297 research outputs found

    Novel digital biomarkers for frontotemporal dementia

    Get PDF
    Frontotemporal dementia (FTD) is a heterogenous neurodegenerative disease and is caused by an autosomal dominant mutation in around one third of cases. This pattern of inheritance enables FTD to be studied in the presymptomatic phase, where individuals carry the genetic mutation but have yet to develop symptoms. There are currently no approved treatments for FTD, although clinical trials aiming to target interventions at the earliest disease stage, are underway. There is an urgent need for biomarkers that can reliably detect and monitor the progression of disease in the presymptomatic period, though there are a distinct lack of sensitive cognitive measures. This thesis aims to establish the validity and sensitivity of a set of digital biomarkers that can be used to measure cognitive function in FTD. I begin this thesis by describing the Ignite computerised cognitive assessment, developing normative properties for the tests through a remote data collection study in over 2,000 healthy controls. I build upon this validation by establishing the concurrent validity of Ignite with gold-standard pen and paper tasks, the test-retest reliability upon repeated administration, and demonstrate the tests are sensitive to presymptomatic impairment across several cognitive domains. I also describe a novel portable eye tracking experiment that can be completed outside of the lab, first highlighting the validity of the tests as measures of cognitive function and demonstrating their sensitivity in detecting early changes in social cognition in the presymptomatic period. Finally, I investigate a smartphone app that passively monitors human-device interactions to generate digital biomarkers of cognitive function. I establish the acceptability of the app in the general population before demonstrating the measures produced can detect differences in keyboard interactions in presymptomatic FTD mutation carriers. This work provides evidence that biomarkers generated from different digital devices are valid and sensitive measures of cognitive impairment in FTD. Therefore, digital biomarkers could replace outdated pen and paper tasks and be used as outcome measures in clinical trials

    Security Analysis: A Critical Thinking Approach

    Get PDF
    Security Analysis: A Critical-Thinking Approach is for anyone desiring to learn techniques for generating the best answers to complex questions and best solutions to complex problems. It furnishes current and future analysts in national security, homeland security, law enforcement, and corporate security an alternative, comprehensive process for conducting both intelligence analysis and policy analysis. The target audience is upper-division undergraduate students and new graduate students, along with entry-level practitioner trainees. The book centers on a Security Analysis Critical-Thinking Framework that synthesizes critical-thinking and existing analytic techniques. Ample examples are provided to assist readers in comprehending the material. Newly created material includes techniques for analyzing beliefs and political cultures. The book also functions as an introduction to Foreign Policy and Security Studies.https://encompass.eku.edu/ekuopen/1005/thumbnail.jp

    Monitoring fatigue and drowsiness in motor vehicle occupants using electrocardiogram and heart rate - A systematic review

    Get PDF
    Introdução: A fadiga é um estado complexo que pode resultar em diminuição da vigilância, frequentemente acompanhada de sonolência. A fadiga durante a condução contribui significativamente para acidentes de trânsito em todo o mundo, destacando-se a necessidade de técnicas de monitorização eficazes. Existem várias tecnologias para aumentar a segurança do condutor e reduzir os riscos de acidentes, como sistemas de deteção de fadiga que podem alertar os condutores à medida que a sonolência se instala. Em particular, a análise dos padrões de frequência cardíaca pode oferecer informações valiosas sobre a condição fisiológica e o nível de vigilância do condutor, permitindo-lhe compreender os seus níveis de fadiga. Esta revisão tem como objetivo estabelecer o estado atual das estratégias de monitorização para ocupantes de veículos, com foco específico na avaliação da fadiga pela frequência cardíaca e variabilidade da frequência cardíaca. Métodos: Realizamos uma pesquisa sistemática da literatura nas bases de dados Web of Science, SCOPUS e Pubmed, utilizando os termos veículo, condutor, monitoração fisiológica, fadiga, sono, eletrocardiograma, frequência cardíaca e variabilidade da frequência cardíaca. Examinamos artigos publicados entre 1 de janeiro de 2018 e 31 de janeiro de 2023. Resultados: Um total de 371 artigos foram identificados, dos quais 71 foram incluídos neste estudo. Entre os artigos incluídos, 57 utilizam o eletrocardiograma (ECG) como sinal adquirido para medir a frequência cardíaca, sendo que a maioria das leituras de ECG foi obtida através de sensores de contacto (n=41), seguidos por sensores vestíveis não invasivos (n=11). Relativamente à validação, 23 artigos não mencionam qualquer tipo de validação, enquanto a maioria se baseia em avaliações subjetivas de fadiga relatadas pelos próprios participantes (n=27) e avaliações feitas por observadores com base em vídeos (n=11). Dos artigos incluídos, apenas 14 englobam um sistema de estimativa de fadiga e sonolência. Alguns relatam um desempenho satisfatórios, no entanto, o tamanho reduzido da amostra limita a abrangência de quaisquer conclusões. Conclusão: Esta revisão destaca o potencial da análise da frequência cardíaca e da instrumentação não invasiva para a monitorização contínua do estado do condutor e deteção de sonolência. Uma das principais questões é a falta de métodos suficientes de validação e estimativa para a fadiga, o que contribui para a insuficiência dos métodos na criação de sistemas de alarme proativos. Esta área apresenta grandes perspetivas, mas ainda está longe de ser implementada de forma fiável.Background: Fatigue is a complex state that can result in decreased alertness, often accompanied by drowsiness. Driving fatigue has become a significant contributor to traffic accidents globally, highlighting the need for effective monitoring techniques. Various technologies exist to enhance driver safety and minimize accident risks, such as fatigue detection systems that can alert drivers as drowsiness sets in. In particular, measuring heart rate patterns may offer valuable insights into the occupant's physiological condition and level of alertness, and may allow them to understand their fatigue levels. This review aims to establish the current state of the art of monitoring strategies for vehicle occupants, specifically focusing on fatigue assessed by heart rate and heart rate variability. Methods: We performed a systematic literature search in the databases of Web Of Science, SCOPUS and Pubmed, using the terms vehicle, driver, physiologic monitoring, fatigue, sleep, electrocardiogram, heart rate and heart rate variability. We examine articles published between 1st of january 2018 and 31st of January 2023. Results: A total of 371 papers were identified from which 71 articles were included in this study. Among the included papers, 57 utilized electrocardiogram (ECG) as the acquired signal for heart rate (HR) measures, with most ECG readings obtained through contact sensors (n=41), followed by non-intrusive wearable sensors (n=11). Regarding validation, 23 papers do not report validation, while the majority rely on subjective self-reported fatigue ratings (n=27) and video-based observer ratings(n=11). From the included papers, only 14 comprise a fatigue and drowsiness estimation system. Some report acceptable performances, but reduced sample size limits the reach of any conclusions. Conclusions: This review highlights the potential of HR analysis and non-intrusive instrumentation for continuous monitoring of driver's status and detecting sleepiness. One major issue is the lack of sufficient validation and estimation methods for fatigue, contributing to the insufficiency of methods in providing proactive alarm systems. This area shows great promise but is still far from being reliably implemented

    Abnormal reactivity of resting-state EEG alpha rhythms during eyes open in patients with Alzheimer's and Lewy body diseases

    Get PDF
    Previous studies suggest that resting-state electroencephalographic (rsEEG) rhythms recorded in old patients with dementia due to different neurodegenerative diseases have a significant heuristic and clinical potential in identifying peculiar abnormalities of the ascending activating systems and reciprocal thalamocortical circuits in which oscillatory (de)synchronizing signals dynamically underpin cortical arousal in the regulation of quiet vigilance. In the present PhD program, a new methodological approach based on rsEEG cortical source estimation and individually-based frequency bands was used to test the hypothesis of significant abnormalities in the neurophysiological oscillatory mechanisms underlying the regulation of the quiet vigilance during the transition from an eyes-closed to an eyes-open condition in patients with the most prevalent neurodegenerative dementing disorders such as Alzheimer’s disease and Lewy Body and Parkinson’s diseases and initial abnormalities in the prodromal stage of ADD, characterized by mild cognitive impairment. Three rsEEG studies were performed for that purpose. In the first study, we tested if the reactivity of posterior rsEEG alpha rhythms from the eye- closed to the eyes-open condition may differ in patients with dementia due to Lewy Bodies (DLB) and Alzheimer’s disease (ADD) as a functional probe of the dominant neural synchronization mechanisms regulating the vigilance in posterior visual systems. We used clinical, demographical, and rsEEG datasets in 28 healthy elderly (Healthy) seniors, 42 DLB, and 48 ADD participants. The eLORETA freeware estimated rsEEG cortical sources at individual delta, theta, and alpha frequencies. Results showed a substantial (> -10%) reduction in the posterior alpha activities during the eyes-open condition in 24 Healthy, 26 ADD, and 22 DLB subjects. There were lower reductions in the posterior alpha activities in the ADD and DLB groups than in the Healthy group. The reduction in the occipital region was lower in the DLB than in the ADD group. These results suggest that DLB patients may suffer a greater alteration in the neural synchronization mechanisms regulating vigilance in occipital cortical systems compared to ADD patients. In the second study, we hypothesized that the vigilance dysregulation seen in PDD patients might be reflected by altered reactivity of posterior rsEEG alpha rhythms during the vigilance transition from an eyes-closed to an eyes-open condition. We used clinical, demographical, and rsEEG datasets in 28 healthy elderly (Healthy), 73 PDD, and 35 ADD participants. We have applied the same methodology used for the first study. Results showed substantial (> -10%) reduction (reactivity) in the posterior alpha source activities from the eyes-closed to the eyes-open condition in 88% of the Healthy seniors, 57% of the ADD patients, and only 35% of the PDD patients. In these alpha-reactive participants, there was lower reactivity in the parietal alpha source activities in the PDD group than in the Healthy and the ADD groups. These results suggest that PDD is characterized by poor reactivity of mechanisms desynchronizing posterior rsEEG alpha rhythms in response to visual inputs. This finding could be an interesting biomarker of impaired vigilance regulation in quiet wakefulness in PDD patients. Indeed, such biomarkers may provide endpoints for pharmacological intervention and brain electromagnetic stimulations to improve the PDD patients’ general ability to regulate vigilance and primary visual consciousness in the activities of daily living. In the third study, we tested the exploratory hypothesis that rsEEG alpha rhythms may predict and be sensitive to mild cognitive impairment due to AD (ADMCI) progression at a 6-month follow- up (a relevant feature for intervention clinical trials). Clinical, neuroimaging, and rsEEG datasets in 52 ADMCI and 60 Healthy seniors were used. We applied the same methodology used for the first and the second studies. Results showed a substantial (> -10%) reduction in the posterior alpha source activities during the eyes-open condition in about 90% and 70% of the Healthy and ADMCI participants, respectively. In the younger ADMCI patients (mean age of 64.3±1.1) with “reactive” rsEEG alpha source activities, posterior alpha source activities during the eyes closed condition predicted the global cognitive status at the 6-month follow-up. In all ADMCI participants with “reactive” rsEEG alpha source activities, posterior alpha source activities during the eyes-closed condition reduced in magnitude at that follow-up. These effects could not be explained by neuroimaging and neuropsychological biomarkers of AD. These results suggest that in ADMCI patients, the true (“reactive”) posterior rsEEG alpha rhythms, when present, predict (in relation to younger age) and are quite sensitive to the effects of the disease progression on neurophysiological mechanisms underpinning vigilance regulation. The results of the three studies unveiled the significant extent to which the well-known impairments in the cholinergic and dopaminergic neuromodulatory ascending systems could affect the brain neurophysiological oscillatory mechanisms underpinning the reactivity of rsEEG alpha rhythms during eyes open and, then, the regulation of quiet vigilance in ADD, PDD, and DLB patients, thus enriching the neurophysiological model underlying their known difficulties to remain awake in quiet environmental conditions during daytime

    Internet and Biometric Web Based Business Management Decision Support

    Get PDF
    Internet and Biometric Web Based Business Management Decision Support MICROBE MOOC material prepared under IO1/A5 Development of the MICROBE personalized MOOCs content and teaching materials Prepared by: A. Kaklauskas, A. Banaitis, I. Ubarte Vilnius Gediminas Technical University, Lithuania Project No: 2020-1-LT01-KA203-07810

    Covid Conspiracy Theories in Global Perspective

    Get PDF
    Covid Conspiracy Theories in Global Perspective examines how conspiracy theories and related forms of misinformation and disinformation about the Covid-19 pandemic have circulated widely around the world. Covid conspiracy theories have attracted considerable attention from researchers, journalists, and politicians, not least because conspiracy beliefs have the potential to negatively affect adherence to public health measures. While most of this focus has been on the United States and Western Europe, this collection provides a unique global perspective on the emergence and development of conspiracy theories through a series of case studies. The chapters have been commissioned by recognized experts on area studies and conspiracy theories. The chapters present case studies on how Covid conspiracism has played out (some focused on a single country, others on regions), using a range of methods from a variety of disciplinary perspectives, including history, politics, sociology, anthropology, and psychology. Collectively, the authors reveal that, although there are many narratives that have spread virally, they have been adapted for different uses and take on different meanings in local contexts. This volume makes an important contribution to the rapidly expanding field of academic conspiracy theory studies, as well as being of interest to those working in the media, regulatory agencies, and civil society organizations, who seek to better understand the problem of how and why conspiracy theories spread

    Fatigue Detection for Ship OOWs Based on Input Data Features, from The Perspective of Comparison with Vehicle Drivers: A Review

    Get PDF
    Ninety percent of the world’s cargo is transported by sea, and the fatigue of ship officers of the watch (OOWs) contributes significantly to maritime accidents. The fatigue detection of ship OOWs is more difficult than that of vehicles drivers owing to an increase in the automation degree. In this study, research progress pertaining to fatigue detection in OOWs is comprehensively analysed based on a comparison with that in vehicle drivers. Fatigue detection techniques for OOWs are organised based on input sources, which include the physiological/behavioural features of OOWs, vehicle/ship features, and their comprehensive features. Prerequisites for detecting fatigue in OOWs are summarised. Subsequently, various input features applicable and existing applications to the fatigue detection of OOWs are proposed, and their limitations are analysed. The results show that the reliability of the acquired feature data is insufficient for detecting fatigue in OOWs, as well as a non-negligible invasive effect on OOWs. Hence, low-invasive physiological information pertaining to the OOWs, behaviour videos, and multisource feature data of ship characteristics should be used as inputs in future studies to realise quantitative, accurate, and real-time fatigue detections in OOWs on actual ships

    A health-oriented emotion-centred origami-based PSS concept. A product-service system concept aimed to help users manage and reduce their stress more tangibly to improve their health and well-being.

    Get PDF
    Emotions have a fundamental role in the experience, perception, cognition, and development of people (Barrett et al., 2016; Plutchik, 2001). Negative emotions such as stress, if not managed appropriately, may be a risk factor in developing diseases such as dementia, cardiovascular problems, and depression, amongst others (Dum et al., 2016; Sandi et al., 2001). This interdisciplinary research presents OrigamEase, a health-oriented emotion-centred origami-based PSS concept to help adults manage their stress more tangibly, in response to its main research question: How can engineering design research contribute to improving people’s emotional health and wellbeing? OrigamEase was designed throughout this research, and its design and testing served to develop a health & well-being oriented, emotion-centred engineering design methodology (HWOEED). Therefore, the design of this methodology is the result of the structuring and ordering of the developmental process of exploring, conducting and streamlining the research, design and testing of OrigamEase. The design of OrigamEase (both the product and the service part) is based on the cognitive research stream of emotions and stress. Therefore, this research also aims to broaden the knowledge about the implications and management of the emotional experience of stress from an engineering and design point of view, complementing the available solutions for stress management through a structured, measurable, and tangible tool. The HWOEED methodology is influenced by Kansei Engineering and Design Thinking methodologies and integrates various engineering design research methods. However, this methodology proposes a different application of the integration of emotional considerations into engineering design processes., it seeks to improve the emotional experience of users to preserve and promote their health and well-being through specifically designed products, services or PSS. Therefore, these designs become the means and not the end of the engineering design efforts. Also, this methodology can be transferrable to other engineering design solutions. OrigamEase was tested with 114 adults between 18 and 70 years old through three pilot tests (n=43) and six trial tests (n=71) using a concurrent triangulation mixed methods design. Then the results from these tests were contrasted with two control tests (n=22). The results show that using OrigamEase reduced the measured stress levels of participants (self-reported, heart rate and electrodermal activity) significantly, supporting the experiment hypothesis. Stress levels were recorded before and after using OrigamEase; then, a repeated-measures t-test was applied to find if these differences were significant or not. After using OrigamEase, 73.2% of participants reported feeling less stressed (mean reduction=13.94%), 85.5% experienced a reduction in their heart rate (mean reduction=9.8 bpm), and 78.9% had a lower electrodermal activity (mean reduction= 10.8 points). The testing of OrigamEase served as an initial application validation of the HWOEED methodology. This research demonstrates that engineering and design fields not only can but need to contribute to research on emotions through interdisciplinary research. Emotions are a fundamental part of all human experiences, impacting a person’s health and well-being profoundly
    corecore