363 research outputs found

    Robotic neurorehabilitation: a computational motor learning perspective

    Get PDF
    Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols

    Goal-Directed Reasoning and Cooperation in Robots in Shared Workspaces: an Internal Simulation Based Neural Framework

    Get PDF
    From social dining in households to product assembly in manufacturing lines, goal-directed reasoning and cooperation with other agents in shared workspaces is a ubiquitous aspect of our day-to-day activities. Critical for such behaviours is the ability to spontaneously anticipate what is doable by oneself as well as the interacting partner based on the evolving environmental context and thereby exploit such information to engage in goal-oriented action sequences. In the setting of an industrial task where two robots are jointly assembling objects in a shared workspace, we describe a bioinspired neural architecture for goal-directed action planning based on coupled interactions between multiple internal models, primarily of the robot’s body and its peripersonal space. The internal models (of each robot’s body and peripersonal space) are learnt jointly through a process of sensorimotor exploration and then employed in a range of anticipations related to the feasibility and consequence of potential actions of two industrial robots in the context of a joint goal. The ensuing behaviours are demonstrated in a real-world industrial scenario where two robots are assembling industrial fuse-boxes from multiple constituent objects (fuses, fuse-stands) scattered randomly in their workspace. In a spatially unstructured and temporally evolving assembly scenario, the robots employ reward-based dynamics to plan and anticipate which objects to act on at what time instances so as to successfully complete as many assemblies as possible. The existing spatial setting fundamentally necessitates planning collision-free trajectories and avoiding potential collisions between the robots. Furthermore, an interesting scenario where the assembly goal is not realizable by either of the robots individually but only realizable if they meaningfully cooperate is used to demonstrate the interplay between perception, simulation of multiple internal models and the resulting complementary goal-directed actions of both robots. Finally, the proposed neural framework is benchmarked against a typically engineered solution to evaluate its performance in the assembly task. The framework provides a computational outlook to the emerging results from neurosciences related to the learning and use of body schema and peripersonal space for embodied simulation of action and prediction. While experiments reported here engage the architecture in a complex planning task specifically, the internal model based framework is domain-agnostic facilitating portability to several other tasks and platforms

    Pressure mapping using nanocomposite-enhanced foam and machine learning

    Get PDF
    Pressure mapping has garnered considerable interest in the healthcare and robotic industries. Low-cost and large-area compliant devices, as well as fast and effective computational algorithms, have been proposed in the last few years to facilitate distributed pressure sensing. One approach is to use electrical impedance tomography (EIT) to reconstruct the contact pressure distribution of piezoresistive materials. While tremendous success has been demonstrated, conventional algorithms may be unsuitable for real-time monitoring due to its computational demand and runtime. Moreover, the low resolution of reconstructed images is a well-known issue related to the regularization strategies typically employed for traditional EIT methods. Therefore, in this study, two different supervised machine learning (ML) approaches, namely, radial basis function networks and deep neural networks, were employed to efficiently solve the inverse EIT problem and improve the resolution of reconstructed pressure maps. The demonstration of high-resolution pressure mapping, specifically, for identifying pressure hotspots, was achieved using a carbon nanotube-based thin film integrated with foam

    Numerical Simulation

    Get PDF
    Nowadays mathematical modeling and numerical simulations play an important role in life and natural science. Numerous researchers are working in developing different methods and techniques to help understand the behavior of very complex systems, from the brain activity with real importance in medicine to the turbulent flows with important applications in physics and engineering. This book presents an overview of some models, methods, and numerical computations that are useful for the applied research scientists and mathematicians, fluid tech engineers, and postgraduate students

    Constructing the space of visual attention

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Architecture, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Page 180 blank. Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 168-171).This thesis explores the nature of a human experience in space through a primary inquiry into vision. This inquiry begins by questioning the existing methods and instruments employed to capture and represent a human experience of space. While existing qualitative and quantitative methods and instruments -- from "subjective" interviews to "objective" photographic documentation -- may lead to insight in the study of a human experience in space, we argue that they are inherently limited with respect to physiological realities. As one moves about the world, one believes to see the world as continuous and fully resolved. However, this is not how human vision is currently understood to function on a physiological level. If we want to understand how humans visually construct a space, then we must examine patterns of visual attention on a physiological level. In order to inquire into patterns of visual attention in three dimensional space, we need to develop new instruments and new methods of representation. The instruments we require, directly address the physiological realities of vision, and the methods of representation seek to situate the human subject within a space of their own construction. In order to achieve this goal we have developed PUPIL, a custom set of hardware and software instruments, that capture the subject's eye movements. Using PUPIL, we have conducted a series of trials from proof of concept -- demonstrating the capabilities of our instruments -- to critical inquiry of the relationship between a human subject and a space. We have developed software to visualize this unique spatial experience, and have posed open questions based on the initial findings of our trials. This thesis aims to contribute to spatial design disciplines, by providing a new way to capture and represent a human experience of space.by Moritz Philipp Kassner [and] William Rhoades Patera.S.M

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Proceedings XXIII Congresso SIAMOC 2023

    Get PDF
    Il congresso annuale della Società Italiana di Analisi del Movimento in Clinica (SIAMOC), giunto quest’anno alla sua ventitreesima edizione, approda nuovamente a Roma. Il congresso SIAMOC, come ogni anno, è l’occasione per tutti i professionisti che operano nell’ambito dell’analisi del movimento di incontrarsi, presentare i risultati delle proprie ricerche e rimanere aggiornati sulle più recenti innovazioni riguardanti le procedure e le tecnologie per l’analisi del movimento nella pratica clinica. Il congresso SIAMOC 2023 di Roma si propone l’obiettivo di fornire ulteriore impulso ad una già eccellente attività di ricerca italiana nel settore dell’analisi del movimento e di conferirle ulteriore respiro ed impatto internazionale. Oltre ai qualificanti temi tradizionali che riguardano la ricerca di base e applicata in ambito clinico e sportivo, il congresso SIAMOC 2023 intende approfondire ulteriori tematiche di particolare interesse scientifico e di impatto sulla società. Tra questi temi anche quello dell’inserimento lavorativo di persone affette da disabilità anche grazie alla diffusione esponenziale in ambito clinico-occupazionale delle tecnologie robotiche collaborative e quello della protesica innovativa a supporto delle persone con amputazione. Verrà infine affrontato il tema dei nuovi algoritmi di intelligenza artificiale per l’ottimizzazione della classificazione in tempo reale dei pattern motori nei vari campi di applicazione

    Beyond 100: The Next Century in Geodesy

    Get PDF
    This open access book contains 30 peer-reviewed papers based on presentations at the 27th General Assembly of the International Union of Geodesy and Geophysics (IUGG). The meeting was held from July 8 to 18, 2019 in Montreal, Canada, with the theme being the celebration of the centennial of the establishment of the IUGG. The centennial was also a good opportunity to look forward to the next century, as reflected in the title of this volume. The papers in this volume represent a cross-section of present activity in geodesy, and highlight the future directions in the field as we begin the second century of the IUGG. During the meeting, the International Association of Geodesy (IAG) organized one Union Symposium, 6 IAG Symposia, 7 Joint Symposia with other associations, and 20 business meetings. In addition, IAG co-sponsored 8 Union Symposia and 15 Joint Symposia. In total, 3952 participants registered, 437 of them with IAG priority. In total, there were 234 symposia and 18 Workshops with 4580 presentations, of which 469 were in IAG-associated symposia. ; This volume will publish papers based on International Association of Geodesy (IAG) -related presentations made at the International Association of Geodesy at the 27th IUGG General Assembly, Montreal, July 2019. It will include papers associated with all of the IAG and joint symposia from the meeting, which span all aspects of modern geodesy, and linkages to earth and environmental sciences. It continues the long-running IAG Symposia Series
    • …
    corecore