788 research outputs found

    Vision-model-based Real-time Localization of Unmanned Aerial Vehicle for Autonomous Structure Inspection under GPS-denied Environment

    Full text link
    UAVs have been widely used in visual inspections of buildings, bridges and other structures. In either outdoor autonomous or semi-autonomous flights missions strong GPS signal is vital for UAV to locate its own positions. However, strong GPS signal is not always available, and it can degrade or fully loss underneath large structures or close to power lines, which can cause serious control issues or even UAV crashes. Such limitations highly restricted the applications of UAV as a routine inspection tool in various domains. In this paper a vision-model-based real-time self-positioning method is proposed to support autonomous aerial inspection without the need of GPS support. Compared to other localization methods that requires additional onboard sensors, the proposed method uses a single camera to continuously estimate the inflight poses of UAV. Each step of the proposed method is discussed in detail, and its performance is tested through an indoor test case.Comment: 8 pages, 5 figures, submitted to i3ce 201

    Keyframe-based visual–inertial odometry using nonlinear optimization

    Get PDF
    Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate visual–inertial odometry or simultaneous localization and mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that nonlinear optimization offers superior accuracy, while still tractable in complexity thanks to the sparsity of the underlying problem. Taking inspiration from these findings, we formulate a rigorously probabilistic cost function that combines reprojection errors of landmarks and inertial terms. The problem is kept tractable and thus ensuring real-time operation by limiting the optimization to a bounded window of keyframes through marginalization. Keyframes may be spaced in time by arbitrary intervals, while still related by linearized inertial terms. We present evaluation results on complementary datasets recorded with our custom-built stereo visual–inertial hardware that accurately synchronizes accelerometer and gyroscope measurements with imagery. A comparison of both a stereo and monocular version of our algorithm with and without online extrinsics estimation is shown with respect to ground truth. Furthermore, we compare the performance to an implementation of a state-of-the-art stochastic cloning sliding-window filter. This competitive reference implementation performs tightly coupled filtering-based visual–inertial odometry. While our approach declaredly demands more computation, we show its superior performance in terms of accuracy

    Exploring Convolutional Networks for End-to-End Visual Servoing

    Full text link
    Present image based visual servoing approaches rely on extracting hand crafted visual features from an image. Choosing the right set of features is important as it directly affects the performance of any approach. Motivated by recent breakthroughs in performance of data driven methods on recognition and localization tasks, we aim to learn visual feature representations suitable for servoing tasks in unstructured and unknown environments. In this paper, we present an end-to-end learning based approach for visual servoing in diverse scenes where the knowledge of camera parameters and scene geometry is not available a priori. This is achieved by training a convolutional neural network over color images with synchronised camera poses. Through experiments performed in simulation and on a quadrotor, we demonstrate the efficacy and robustness of our approach for a wide range of camera poses in both indoor as well as outdoor environments.Comment: IEEE ICRA 201

    Active Estimation of Distance in a Robotic Vision System that Replicates Human Eye Movement

    Full text link
    Many visual cues, both binocular and monocular, provide 3D information. When an agent moves with respect to a scene, an important cue is the different motion of objects located at various distances. While a motion parallax is evident for large translations of the agent, in most head/eye systems a small parallax occurs also during rotations of the cameras. A similar parallax is present also in the human eye. During a relocation of gaze, the shift in the retinal projection of an object depends not only on the amplitude of the movement, but also on the distance of the object with respect to the observer. This study proposes a method for estimating distance on the basis of the parallax that emerges from rotations of a camera. A pan/tilt system specifically designed to reproduce the oculomotor parallax present in the human eye was used to replicate the oculomotor strategy by which humans scan visual scenes. We show that the oculomotor parallax provides accurate estimation of distance during sequences of eye movements. In a system that actively scans a visual scene, challenging tasks such as image segmentation and figure/ground segregation greatly benefit from this cue.National Science Foundation (BIC-0432104, CCF-0130851
    • …
    corecore