1,121 research outputs found

    Binary pattern tile set synthesis is NP-hard

    Full text link
    In the field of algorithmic self-assembly, a long-standing unproven conjecture has been that of the NP-hardness of binary pattern tile set synthesis (2-PATS). The kk-PATS problem is that of designing a tile assembly system with the smallest number of tile types which will self-assemble an input pattern of kk colors. Of both theoretical and practical significance, kk-PATS has been studied in a series of papers which have shown kk-PATS to be NP-hard for k=60k = 60, k=29k = 29, and then k=11k = 11. In this paper, we close the fundamental conjecture that 2-PATS is NP-hard, concluding this line of study. While most of our proof relies on standard mathematical proof techniques, one crucial lemma makes use of a computer-assisted proof, which is a relatively novel but increasingly utilized paradigm for deriving proofs for complex mathematical problems. This tool is especially powerful for attacking combinatorial problems, as exemplified by the proof of the four color theorem by Appel and Haken (simplified later by Robertson, Sanders, Seymour, and Thomas) or the recent important advance on the Erd\H{o}s discrepancy problem by Konev and Lisitsa using computer programs. We utilize a massively parallel algorithm and thus turn an otherwise intractable portion of our proof into a program which requires approximately a year of computation time, bringing the use of computer-assisted proofs to a new scale. We fully detail the algorithm employed by our code, and make the code freely available online

    Algorithmic Assembly of Nanoscale Structures

    Get PDF
    The development of nanotechnology has become one of the most significant endeavors of our time. A natural objective of this field is discovering how to engineer nanoscale structures. Limitations of current top-down techniques inspire investigation into bottom-up approaches to reach this objective. A fundamental precondition for a bottom-up approach is the ability to control the behavior of nanoscale particles. Many abstract representations have been developed to model systems of particles and to research methods for controlling their behavior. This thesis develops theories on two such approaches for building complex structures: the self-assembly of simple particles, and the use of simple robot swarms. The concepts for these two approaches are straightforward. Self-assembly is the process by which simple particles, following the rules of some behavior-governing system, naturally coalesce into a more complex form. The other method of bottom-up assembly involves controlling nanoscale particles through explicit directions and assembling them into a desired form. Regarding the self-assembly of nanoscale structures, we present two construction methods in a variant of a popular theoretical model known as the 2-Handed Tile Self-Assembly Model. The first technique achieves shape construction at only a constant scale factor, while the second result uses only a constant number of unique particle types. Regarding the use of robot swarms for construction, we first develop a novel technique for reconfiguring a swarm of globally-controlled robots into a desired shape even when the robots can only move maximally in a commanded direction. We then expand on this work by formally defining an entire hierarchy of shapes which can be built in this manner and we provide a technique for doing so

    Self-assembly: modelling, simulation, and planning

    Get PDF
    Samoskládání je proces, při kterém se kolekce neuspořádaných částic samovolně orientuje do uspořádaného vzoru nebo funkční struktury bez působení vnější síly, pouze za pomoci lokálních interakcí mezi samotnými částicemi. Tato teze se zaměřuje na teorii dlaždicových samoskládacích systémů a jejich syntézu. Nejdříve je představena oblast výzkumu věnující se dlaždičovým samoskládacím systémům, a poté jsou důkladně popsány základní typy dlaždicových skládacích systémů, kterými jsou abstract Tile Assembly Model (aTAM ), kinetic Tile Assembly Model (kTAM ), a 2-Handed Assembly Model (2HAM ). Poté jsou představeny novější modely a modely se specifickým použitím. Dále je zahrnut stručný popis původu teorie dlaždicového samoskládání společně s krátkým popisem nedávného výzkumu. Dále jsou představeny dva obecné otevřené problémy dlaždicového samoskládání s hlavním zaměřením na problém Pattern Self-Assembly Tile Set Synthesis (PATS), což je NP-těžká kombinatorická optimalizační úloha. Nakonec je ukázán algoritmus Partition Search with Heuristics (PS-H ), který se používá k řešení problému PATS. Následovně jsou demonstrovány dvě aplikace, které byly vyvinuty pro podporu výzkumu abstraktních dlaždicových skládacích modelů a syntézy množin dlaždic pro samoskládání zadaných vzorů. První aplikace je schopná simulovat aTAM a 2HAM systémy ve 2D prostoru. Druhá aplikace je řešič PATS problému, který využívá algoritmu PS-H. Pro obě aplikace jsou popsány hlavní vlastnosti a návrhová rozhodnutí, která řídila jejich vývoj. Nakonec jsou předloženy výsledky několika experimentů. Jedna skupina experimentů byla zaměřena na ověření výpočetní náročnosti vyvinutých algoritmů pro simulátor. Druhá sada experimentů zkoumala vliv jednotlivých vlastností vzorů na vlastnosti dlaždicových systémů, které byly získány syntézou ze vzorů pomocí vyvinutého řešiče PATS problému. Bylo prokázáno, že algoritmus simulující aTAM systém má lineární časovou výpočetní náročnost, zatímco algoritmus simulující 2HAM systém má exponenciální časovou výpočetní náročnost, která navíc silně závisí na simulovaném systému. Aplikace pro řešení syntézy množiny dlaždic ze vzorů je schopna najít relativně malé řešení i pro velké zadané vzory, a to v přiměřeném čase.Self-assembly is the process in which a collection of disordered units organise themselves into ordered patterns or functional structures without any external direction, solely using local interactions among the components. This thesis focuses on the theory of tile-based self-assembly systems and their synthesis. First, an introduction to the study field of tile-based self-assembly systems are given, followed by a thorough description of common types of tile assembly systems such as abstract Tile Assembly Model (aTAM ), kinetic Tile Assembly Model (kTAM ), and 2-Handed Assembly Model (2HAM ). After that, various recently developed models and models with specific applications are listed. A brief summary of the origins of the tile-based self-assembly is also included together with a short review of recent results. Two general open problems are presented with the main focus on the Pattern Self-Assembly Tile Set Synthesis (PATS) problem, which is NP-hard combinatorial optimisation problem. Partition Search with Heuristics (PS-H ) algorithm is presented as it is used for solving the PATS problem. Next, two applications which were developed to study the abstract tile assembly models and the synthesis of tile sets for pattern self-assembly are introduced. The first application is a simulator capable of simulating aTAM and 2HAM systems in 2D. The second application is a solver of the PATS problem based around the PS-H algorithm. Main features and design decisions are described for both applications. Finally, results from several experiments are presented. One set of experiments were focused on verification of computation complexity of algorithms developed for the simulator, and the other set of experiments studied the influences of the properties of the pattern on the tile assembly system synthesised by our implementation of PATS problem solver. It was shown that the algorithm for simulating aTAM systems have linear computation time complexity, whereas the algorithm simulating 2HAM systems have exponential computation time complexity, which strongly varies based on the simulated system. The synthesiser application is capable of finding a relatively small solution even for quite large input patterns in reasonable amounts of time

    Problems in Algorithmic Self-assembly and a Genetic Approach to Patterns

    Get PDF
    As it becomes increasingly harder to make transistors smaller, replacements for traditional silicon computers become sought after. To study the computing power of these potential computers, various theoretical models have been proposed, such as the abstract Tile Assembly Model (aTAM) and chemical reaction networks (CRNs). This thesis compiles research in various models such as the aTAM, Tile Automata, and CRNs. This work shows an investigation of covert computation in the aTAM and an evolutionary algorithm to approximate solutions to the pattern self-assembly tile set synthesis (PATS) problem. Next, optimal state complexity for building squares in Tile Automata is shown along with a Tile Automata simulation of the staged assembly model (SAM). Lastly, reachability for restricted general CRNs, reachability for feed-forward CRNs, and reachability for Void and Autogenesis CRNs are shown to be in various complexity classes

    Structural characterization and statistical-mechanical model of epidermal patterns

    Full text link
    In proliferating epithelia of mammalian skin, cells of irregular polygonal-like shapes pack into complex nearly flat two-dimensional structures that are pliable to deformations. In this work, we employ various sensitive correlation functions to quantitatively characterize structural features of evolving packings of epithelial cells across length scales in mouse skin. We find that the pair statistics in direct and Fourier spaces of the cell centroids in the early stages of embryonic development show structural directional dependence, while in the late stages the patterns tend towards statistically isotropic states. We construct a minimalist four-component statistical-mechanical model involving effective isotropic pair interactions consisting of hard-core repulsion and extra short-ranged soft-core repulsion beyond the hard core, whose length scale is roughly the same as the hard core. The model parameters are optimized to match the sample pair statistics in both direct and Fourier spaces. By doing this, the parameters are biologically constrained. Our model predicts essentially the same polygonal shape distribution and size disparity of cells found in experiments as measured by Voronoi statistics. Moreover, our simulated equilibrium liquid-like configurations are able to match other nontrivial unconstrained statistics, which is a testament to the power and novelty of the model. We discuss ways in which our model might be extended so as to better understand morphogenesis (in particular the emergence of planar cell polarity), wound-healing, and disease progression processes in skin, and how it could be applied to the design of synthetic tissues
    corecore