93,213 research outputs found

    Neighborhood Matching Network for Entity Alignment

    Full text link
    Structural heterogeneity between knowledge graphs is an outstanding challenge for entity alignment. This paper presents Neighborhood Matching Network (NMN), a novel entity alignment framework for tackling the structural heterogeneity challenge. NMN estimates the similarities between entities to capture both the topological structure and the neighborhood difference. It provides two innovative components for better learning representations for entity alignment. It first uses a novel graph sampling method to distill a discriminative neighborhood for each entity. It then adopts a cross-graph neighborhood matching module to jointly encode the neighborhood difference for a given entity pair. Such strategies allow NMN to effectively construct matching-oriented entity representations while ignoring noisy neighbors that have a negative impact on the alignment task. Extensive experiments performed on three entity alignment datasets show that NMN can well estimate the neighborhood similarity in more tough cases and significantly outperforms 12 previous state-of-the-art methods.Comment: 11 pages, accepted by ACL 202

    Business Process Retrieval Based on Behavioral Semantics

    Get PDF
    This paper develops a framework for retrieving business processes considering search requirements based on behavioral semantics properties; it presents a framework called "BeMantics" for retrieving business processes based on structural, linguistics, and behavioral semantics properties. The relevance of the framework is evaluated retrieving business processes from a repository, and collecting a set of relevant business processes manually issued by human judges. The "BeMantics" framework scored high precision values (0.717) but low recall values (0.558), which implies that even when the framework avoided false negatives, it prone to false positives. The highest pre- cision value was scored in the linguistic criterion showing that using semantic inference in the tasks comparison allowed to reduce around 23.6 % the number of false positives. Using semantic inference to compare tasks of business processes can improve the precision; but if the ontologies are from narrow and specific domains, they limit the semantic expressiveness obtained with ontologies from more general domains. Regarding the perform- ance, it can be improved by using a filter phase which indexes business processes taking into account behavioral semantics propertie

    An assessment of PenSim2

    Get PDF
    The Department for Work and Pensions (DWP)’s Pensim2 model is a dynamic microsimulation model. The principal purpose of this model is to estimate the future distribution of pensioner incomes, thus enabling analysis of the distributional effects of proposed changes to pension policy. This paper presents the results of an assessment of Pensim2 by researchers at the IFS. We start by looking at the overall structure of the model, and how it compares with other dynamic policy analysis models across the world. We make recommendations at this stage as to how the overall modelling strategy could be improved. We then go on to analyse the characteristics of most of the individual modules which make up Pensim2, examining the data used and the regression and predictions used in each step. The results from this examination are used to formulate a set of short and medium-term recommendations for developing and improving the model. Finally, we look at what might become possible for the model over a much longer time frame – looking towards developing a ‘Pensim3’ model over the next decade or so

    Affective Facial Expression Processing via Simulation: A Probabilistic Model

    Full text link
    Understanding the mental state of other people is an important skill for intelligent agents and robots to operate within social environments. However, the mental processes involved in `mind-reading' are complex. One explanation of such processes is Simulation Theory - it is supported by a large body of neuropsychological research. Yet, determining the best computational model or theory to use in simulation-style emotion detection, is far from being understood. In this work, we use Simulation Theory and neuroscience findings on Mirror-Neuron Systems as the basis for a novel computational model, as a way to handle affective facial expressions. The model is based on a probabilistic mapping of observations from multiple identities onto a single fixed identity (`internal transcoding of external stimuli'), and then onto a latent space (`phenomenological response'). Together with the proposed architecture we present some promising preliminary resultsComment: Annual International Conference on Biologically Inspired Cognitive Architectures - BICA 201
    • 

    corecore