1,932 research outputs found

    A modular robot system design and control motion modes for locomotion and manipulation tasks

    Get PDF
    This paper describes a modular robot system design SMART, based on three types of modules for urban search tasks. The system attempts to give a quick solution to natural and man-made disaster emergencies. It allows for rapid and cost-effective design and fabrication. The approach is based on the use of an inventory of three types of modules i.e., power and control module, joint module, and specialized module. They are interchangeable in different ways to form different robot configurations for a variety of tasks. Forward and inverse kinematics from assembled robot configurations are analyzed. Description of control motion modes for human-modular robot system interaction is presente

    Modular Self-Reconfigurable Robot Systems

    Get PDF
    The field of modular self-reconfigurable robotic systems addresses the design, fabrication, motion planning, and control of autonomous kinematic machines with variable morphology. Modular self-reconfigurable systems have the promise of making significant technological advances to the field of robotics in general. Their promise of high versatility, high value, and high robustness may lead to a radical change in automation. Currently, a number of researchers have been addressing many of the challenges. While some progress has been made, it is clear that many challenges still exist. By illustrating several of the outstanding issues as grand challenges that have been collaboratively written by a large number of researchers in this field, this article has shown several of the key directions for the future of this growing fiel

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Control of free-flying space robot manipulator systems

    Get PDF
    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail

    A simple 5-DOF walking robot for space station application

    Get PDF
    Robots on the NASA space station have a potential range of applications from assisting astronauts during EVA (extravehicular activity), to replacing astronauts in the performance of simple, dangerous, and tedious tasks; and to performing routine tasks such as inspections of structures and utilities. To provide a vehicle for demonstrating the pertinent technologies, a simple robot is being developed for locomotion and basic manipulation on the proposed space station. In addition to the robot, an experimental testbed was developed, including a 1/3 scale (1.67 meter modules) truss and a gravity compensation system to simulate a zero-gravity environment. The robot comprises two flexible links connected by a rotary joint, with a 2 degree of freedom wrist joints and grippers at each end. The grippers screw into threaded holes in the nodes of the space station truss, and enable it to walk by alternately shifting the base of support from one foot (gripper) to the other. Present efforts are focused on mechanical design, application of sensors, and development of control algorithms for lightweight, flexible structures. Long-range research will emphasize development of human interfaces to permit a range of control modes from teleoperated to semiautonomous, and coordination of robot/astronaut and multiple-robot teams

    A modal approach to hyper-redundant manipulator kinematics

    Get PDF
    This paper presents novel and efficient kinematic modeling techniques for “hyper-redundant” robots. This approach is based on a “backbone curve” that captures the robot's macroscopic geometric features. The inverse kinematic, or “hyper-redundancy resolution,” problem reduces to determining the time varying backbone curve behavior. To efficiently solve the inverse kinematics problem, the authors introduce a “modal” approach, in which a set of intrinsic backbone curve shape functions are restricted to a modal form. The singularities of the modal approach, modal non-degeneracy conditions, and modal switching are considered. For discretely segmented morphologies, the authors introduce “fitting” algorithms that determine the actuator displacements that cause the discrete manipulator to adhere to the backbone curve. These techniques are demonstrated with planar and spatial mechanism examples. They have also been implemented on a 30 degree-of-freedom robot prototype
    corecore