49,814 research outputs found

    Modular Product Platform Configuration and Co-Design of Assembly Line

    Get PDF
    In this dissertation, the main hypothesis is that formation of products families and platforms can be simultaneously achieved with their corresponding assembly lines using a holistic mathematical model to increase the effectiveness of mass customization and decrease development and assembly costs. A Phylogenetic Network algorithm, four different mathematical models, and postponement effectiveness metric have been developed and implemented to prove this hypothesis. The results of this research are applicable to many modular products such as consumer goods such as computers, laptops, tablets, power tools, home appliances and laboratory weighing scales which have multiple variants. The research provides a hybrid approach balancing between platforms production using make-to-stock strategy, then further customization using make-to-order strategy. The Median-Joining Phylogenetic Network (MJPN) is used to model a delayed differentiation assembly line for a product family. The MJPN is capable of increasing commonality across the product platforms using the Median Vector concept. A Postponement Effectiveness metric was developed and showed that the determined assembly line strategy postponed the products delayed differentiation point more than other found in literature. A Modular Product Multi-Platform Configuration Model is introduced to design optimal products platforms which allow assembly and disassembly of components to form new product variants. A new model of Hierarchic Changeable Modular Product Platforms which defines the optimum hierarchy of the platform components is introduced, to enable delayed product differentiation. A Multi-Period Multi-Platform Configuration Model which accounts for demand fluctuation by including the cost and quantity of inventory of product platforms required for implementing the assembly/disassembly platforms customization was developed. Finally, a global product families and platforms formation mathematical model which fully integrates assembly task assignments, precedence relations, assembly cost was introduced. A family of touch screen tablets was used for illustrating the application and advantages of the newly developed product platform models. This research makes a number of contributions. This is the first time mathematical models are able to flexibly determine the optimal number of product platforms using customization by assembly and disassembly. Inclusion of hierarchy or assembly sequence in platform formation as a variable is novel. This will eliminate assembly sequence ambiguity when designing platforms with duplicate components. The inclusion of inventory costs and quantities in platform design is also new. Finally, the complete integration of platform formation and assembly line design in one mathematical model is introduced for the first time

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    A Multi-Agent based Configuration Process for Mass Customization

    Get PDF
    Large product variety in mass customization involves a high internal complexity level inside a companyĂ­s operations, as well as a high external complexity level from a customerĂ­s perspective. In order to reach a competitive advantage through mass customization, it is necessary to cope with both problems. This is done within the scope of variety formation and variety steering tasks: Variety formation supports customers during the configuration task according to their preferences and knowledge, variety steering tasks internally deal with finding the customizerĂ­s optimal offer. Driven by this economic background, we present a comprehensive multi-agent based design for a configuration process in this paper. It is identified as a suitable solution approach integrating both perspectives. The mass customized products are assumed to be based on a modular architecture and each module variant is associated with an autonomous rational agent. Agents must compete with each other in order to join product variants which suit real customersĂ­ requirements. The negotiation process is based on a market mechanism supported by the target costing concept and a Dutch auction.Multi-agent systems; Configuration process; Market mechanism; Mass Customization

    Developing modular product family using GeMoCURE within an SME

    Get PDF
    Companies adopt the strategy of producing variety of products to be competitive and responsive to market. Product variation is becoming an important factor in companies' ability to accurately meet customer requirements. Ever increasing consumer options mean that customers have more choices than ever before which put commercial pressures on companies to continue to diversify. This can be a particular problem within Small to Medium Enterprises (SMEs) who do not always have the level of resources to meet these requirements. As such, methods are required that provide means for companies to be able to produce a wide range of products at the lowest cost and shortest time. This paper details a new modular product design methodology that provides a focus on developing modular product families. The methodology's function is described and a case study detailed of how it was used within an SME to define the company's product portfolio and create a new Generic Product Function Structure from which a new family of product variants can be developed. The methodology lends itself to modular re-use which has the potential to support rapid development and configuration of product variants

    Designing Scalable Business Models

    Full text link
    Digital business models are often designed for rapid growth, and some relatively young companies have indeed achieved global scale. However despite the visibility and importance of this phenomenon, analysis of scale and scalability remains underdeveloped in management literature. When it is addressed, analysis of this phenomenon is often over-influenced by arguments about economies of scale in production and distribution. To redress this omission, this paper draws on economic, organization and technology management literature to provide a detailed examination of the sources of scaling in digital businesses. We propose three mechanisms by which digital business models attempt to gain scale: engaging both non- paying users and paying customers; organizing customer engagement to allow self- customization; and orchestrating networked value chains, such as platforms or multi-sided business models. Scaling conditions are discussed, and propositions developed and illustrated with examples of big data entrepreneurial firms

    Dynamic Multi-Agent Based Variety Formation and Steering in Mass Customization

    Get PDF
    Large product variety in mass customization involves a high internal complexity level inside a company’s operations, as well as a high external complexity level from a customer’s perspective. To cope with both complexity problems, an information system based on agent technology is able to be identified as a suitable solution approach. The mass customized products are assumed to be based on a modular architecture and each module variant is associated with an autonomous rational agent. Agents have to compete with each other in order to join coalitions representing salable product variants which suit real customers’ requirements. The negotiation process is based on a market mechanism supported by the target costing concept and a Dutch auction. Furthermore, in order to integrate the multi-agent system in the existing information system landscape of the mass customizer, a technical architecture is proposed and a scenario depicting the main communication steps is specified.Product Configuration, Mass Customization, Variety Formation and Steering, Multi Agent System
    • 

    corecore