4,284 research outputs found

    A Home Security System Based on Smartphone Sensors

    Get PDF
    Several new smartphones are released every year. Many people upgrade to new phones, and their old phones are not put to any further use. In this paper, we explore the feasibility of using such retired smartphones and their on-board sensors to build a home security system. We observe that door-related events such as opening and closing have unique vibration signatures when compared to many types of environmental vibrational noise. These events can be captured by the accelerometer of a smartphone when the phone is mounted on a wall near a door. The rotation of a door can also be captured by the magnetometer of a smartphone when the phone is mounted on a door. We design machine learning and threshold-based methods to detect door opening events based on accelerometer and magnetometer data and build a prototype home security system that can detect door openings and notify the homeowner via email, SMS and phone calls upon break-in detection. To further augment our security system, we explore using the smartphone’s built-in microphone to detect door and window openings across multiple doors and windows simultaneously. Experiments in a residential home show that the accelerometer- based detection can detect door open events with an accuracy higher than 98%, and magnetometer-based detection has 100% accuracy. By using the magnetometer method to automate the training phase of a neural network, we find that sound-based detection of door openings has an accuracy of 90% across multiple doors

    Leveraging Multi-Modal Sensing for Mobile Health: A Case Review in Chronic Pain

    Get PDF
    Active and passive mobile sensing has garnered much attention in recent years. In this paper, we focus on chronic pain measurement and management as a case application to exemplify the state of the art. We present a consolidated discussion on the leveraging of various sensing modalities along with modular server-side and on-device architectures required for this task. Modalities included are: activity monitoring from accelerometry and location sensing, audio analysis of speech, image processing for facial expressions as well as modern methods for effective patient self-reporting. We review examples that deliver actionable information to clinicians and patients while addressing privacy, usability, and computational constraints. We also discuss open challenges in the higher level inferencing of patient state and effective feedback with potential directions to address them. The methods and challenges presented here are also generalizable and relevant to a broad range of other applications in mobile sensing

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    A Self-Reconfigurable Framework for Context Awareness

    Get PDF
    Urban environments are increasingly pervaded by ICT devices. Soon, citizens and technologies could collaboratively constitute large-scale socio-technical organisms supporting both individual and collective awareness. This paper illustrates a modern awareness framework designed to deal with the complexity of this scenario. The framework is able to collect and classify data streams in a modular way by supporting service oriented, reconfigurable components. Furthermore, we evaluate an innovative meta-classifcation scheme based on state-automata for (i) improving energy efficiency, (ii) improving classification accuracy and (iii) improving software engineering of aware systems, without affecting the overall performance

    Chinmoku MQP

    Get PDF
    This report details the developmental process of Chinmoku (“silence”), an educational game developed to fulfill the Major Qualifying Project requirement for Worcester Polytechnic Institute’s Interactive Media and Game Development (IMGD) and Computer Science majors. This project was developed over a three month period at Ritsumeikan University’s Biwako-Kusatsu Campus in Shiga Prefecture, Japan. The game seeks to teach Hiragana, one of the Japanese writing systems, to a target audience of young adults familiar with gaming. This report covers all aspects of the team’s development process, research, playtesting, and the possibilities of future work on this project

    Personalized ambient parameters monitoring: design and implementing of a wrist-worn prototype for hazardous gases and sound level detection

    Get PDF
    The concentration is on “3D space utilization” as the concept and infrastructure of designing of a wearable in ambient parameters monitoring. This strategy is implemented according to “multi-layer” approach. In this approach, each group of parameters from the same category is monitored by a modular physical layer enriched with the respected sensors. Depending on the number of parameters and layers, each physical layer is located on top of another. The intention is to implement a device for “everyone in everywhere for everything”
    • …
    corecore