1,310 research outputs found

    Neighborhood Defined Feature Selection Strategy for Improved Face Recognition in Different Sensor Modalitie

    Get PDF
    A novel feature selection strategy for improved face recognition in images with variations due to illumination conditions, facial expressions, and partial occlusions is presented in this dissertation. A hybrid face recognition system that uses feature maps of phase congruency and modular kernel spaces is developed. Phase congruency provides a measure that is independent of the overall magnitude of a signal, making it invariant to variations in image illumination and contrast. A novel modular kernel spaces approach is developed and implemented on the phase congruency feature maps. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The unique modularization procedure developed in this research takes into consideration that the facial variations in a real world scenario are confined to local regions. The additional pixel dependencies that are considered based on their importance help in providing additional information for classification. This procedure also helps in robust localization of the variations, further improving classification accuracy. The effectiveness of the new feature selection strategy has been demonstrated by employing it in two specific applications via face authentication in low resolution cameras and face recognition using multiple sensors (visible and infrared). The face authentication system uses low quality images captured by a web camera. The optical sensor of the web camera is very sensitive to environmental illumination variations. It is observed that the feature selection policy overcomes the facial and environmental variations. A methodology based on multiple training images and clustering is also incorporated to overcome the additional challenges of computational efficiency and the subject\u27s non involvement. A multi-sensor image fusion based face recognition methodology that uses the proposed feature selection technique is presented in this dissertation. Research studies have indicated that complementary information from different sensors helps in improving the recognition accuracy compared to individual modalities. A decision level fusion methodology is also developed which provides better performance compared to individual as well as data level fusion modalities. The new decision level fusion technique is also robust to registration discrepancies, which is a very important factor in operational scenarios. Research work is progressing to use the new face recognition technique in multi-view images by employing independent systems for separate views and integrating the results with an appropriate voting procedure

    Coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures

    Get PDF
    Accomplishments are described for the first year effort of a 5-year program to develop a methodology for coupled structural/thermal/electromagnetic analysis/tailoring of graded composite structures. These accomplishments include: (1) the results of the selective literature survey; (2) 8-, 16-, and 20-noded isoparametric plate and shell elements; (3) large deformation structural analysis; (4) eigenanalysis; (5) anisotropic heat transfer analysis; and (6) anisotropic electromagnetic analysis

    Consistency of spectral clustering in stochastic block models

    Full text link
    We analyze the performance of spectral clustering for community extraction in stochastic block models. We show that, under mild conditions, spectral clustering applied to the adjacency matrix of the network can consistently recover hidden communities even when the order of the maximum expected degree is as small as logn\log n, with nn the number of nodes. This result applies to some popular polynomial time spectral clustering algorithms and is further extended to degree corrected stochastic block models using a spherical kk-median spectral clustering method. A key component of our analysis is a combinatorial bound on the spectrum of binary random matrices, which is sharper than the conventional matrix Bernstein inequality and may be of independent interest.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1274 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Health monitoring of civil infrastructures by subspace system identification method: an overview

    Get PDF
    Structural health monitoring (SHM) is the main contributor of the future's smart city to deal with the need for safety, lower maintenance costs, and reliable condition assessment of structures. Among the algorithms used for SHM to identify the system parameters of structures, subspace system identification (SSI) is a reliable method in the time-domain that takes advantages of using extended observability matrices. Considerable numbers of studies have specifically concentrated on practical applications of SSI in recent years. To the best of author's knowledge, no study has been undertaken to review and investigate the application of SSI in the monitoring of civil engineering structures. This paper aims to review studies that have used the SSI algorithm for the damage identification and modal analysis of structures. The fundamental focus is on data-driven and covariance-driven SSI algorithms. In this review, we consider the subspace algorithm to resolve the problem of a real-world application for SHM. With regard to performance, a comparison between SSI and other methods is provided in order to investigate its advantages and disadvantages. The applied methods of SHM in civil engineering structures are categorized into three classes, from simple one-dimensional (1D) to very complex structures, and the detectability of the SSI for different damage scenarios are reported. Finally, the available software incorporating SSI as their system identification technique are investigated

    Gaussian Nonlinear Line Attractor for Learning Multidimensional Data

    Get PDF
    The human brain’s ability to extract information from multidimensional data modeled by the Nonlinear Line Attractor (NLA), where nodes are connected by polynomial weight sets. Neuron connections in this architecture assumes complete connectivity with all other neurons, thus creating a huge web of connections. We envision that each neuron should be connected to a group of surrounding neurons with weighted connection strengths that reduces with proximity to the neuron. To develop the weighted NLA architecture, we use a Gaussian weighting strategy to model the proximity, which will also reduce the computation times significantly. Once all data has been trained in the NLA network, the weight set can be reduced using a locality preserving nonlinear dimensionality reduction technique. By reducing the weight sets using this technique, we can reduce the amount of outputs for recognition tasks. An appropriate distance measure can then be used for comparing testing data and the trained data when processed through the NLA architecture. It is observed that the proposed GNLA algorithm reduces training time significantly and is able to provide even better recognition using fewer dimensions than the original NLA algorithm. We have tested this algorithm and showed that it works well in different datasets, including the EO Synthetic Vehicle database and the Sheffield face database
    corecore