465 research outputs found

    Routing for Flying Networks using Software-Defined Networking

    Get PDF
    Nos últimos anos, os Veículos Aéreos Não Tripulados (UAVs) estão a ser usados de forma crescente em inúmeras aplicações, tanto militares como civis. A sua miniaturização e o preço reduzido abriram o caminho para o uso de enxames de UAVs, que permitem melhores resultados na realização de tarefas em relação a UAVs independentes. Contudo, para permitir a cooperação entre UAVs, devem ser asseguradas comunicações contínuas e fiáveis.Além disso, os enxames de UAVs foram identificados pela comunidade científica como meio para permitir o acesso à Internet a utilizadores terrestres em cenários como prestação de socorros e Eventos Temporários Lotados (TCEs), tirando partido da sua capacidade para transportar Pontos de Acesso (APs) Wi-Fi e células Long-Term Evolution (LTE). Soluções que dependem de uma Estação de Controlo (CS) capaz de posicionar os UAVs de acordo com as necessidades de tráfego dos utilizadores demonstraram aumentar a Qualidade de Serviço (QoS) oferecida pela rede. No entanto, estas soluções introduzem desafios importantes no que diz respeito ao encaminhamento do tráfego.Recentemente, foi proposta uma solução que tira partido do conhecimento da CS sobre o estado futuro da rede para atualizar dinamicamente as tabelas de encaminhamento de modo a que as ligações na rede voadora não sejam interrompidas, em vez de se recuperar da sua interrupção, como é o caso na maioria dos protocolos de encaminhamento existentes. Apesar de não considerar o impacto das reconfigurações na rede de acesso, como consequência da mobilidade dos APs, ou o balanceamento da carga na rede, esta abordagem é promissora e merece ser desenvolvida e implementada num sistema real.Esta dissertação tem como foco a implementação de um protocolo de encaminhamento para redes voadoras baseado em Software-Defined Networking (SDN). Especificamente, aborda os problemas de mobilidade e de balanceamento da carga na rede de uma perspetiva centralizada, garantindo simultaneamente comunicações ininterruptas e de banda-larga entre utilizadores terrestres e a Internet, permitindo assim que os UAVs se possam reposicionar e reconfigurar sem interferir com as ligações dos terminais à rede.In recent years, Unmanned Aerial Vehicles (UAVs) are being increasingly used in various applications, both military and civilian. Their miniaturisation and low cost paved the way to the usage of swarms of UAVs, which provide better results when performing tasks compared to single UAVs. However, to enable cooperation between the UAVs, always-on and reliable communications must be ensured.Moreover, swarms of UAVs are being targeted by the scientific community as a way to provide Internet access to ground users in scenarios such as disaster reliefs and Temporary Crowded Events (TCEs), taking advantage of the capability of UAVs to carry Wi-Fi Access Points (APs) or Long-Term Evolution (LTE) cells. Solutions relying on a Control Station (CS) capable of positioning the UAVs according to the users' traffic demands have been shown to improve the Quality of Service (QoS) provided by the network. However, they introduce important challenges regarding network routing.Recently, a solution was proposed to take advantage of the knowledge provided by a CS regarding how the network will change, by dynamically updating the forwarding tables before links in the flying network are disrupted, rather than recovering from link failure, as is the case in most of the existing routing protocols. Although it does not consider the impact of reconfigurations on the access network due to the mobility of the APs, it is a promising approach worthy of being improved and implemented in a real system.This dissertation focuses on implementing a routing solution for flying networks based on Software-Defined Networking (SDN). Specifically, it addresses the mobility management and network load balancing issues from a centralised perspective, while simultaneously enabling uninterruptible and broadband communications between ground users and the Internet, thus allowing UAVs to reposition and reconfigure themselves without interfering with the terminals' connections to the network

    Secure Communication Architecture for Dynamic Energy Management in Smart Grid

    Get PDF
    open access articleSmart grid takes advantage of communication technologies for efficient energy management and utilization. It entails sacrifice from consumers in terms of reducing load during peak hours by using a dynamic energy pricing model. To enable an active participation of consumers in load management, the concept of home energy gateway (HEG) has recently been proposed in the literature. However, the HEG concept is rather new, and the literature still lacks to address challenges related to data representation, seamless discovery, interoperability, security, and privacy. This paper presents the design of a communication framework that effectively copes with the interoperability and integration challenges between devices from different manufacturers. The proposed communication framework offers seamless auto-discovery and zero- con figuration-based networking between heterogeneous devices at consumer sites. It uses elliptic-curve-based security mechanism for protecting consumers' privacy and providing the best possible shield against different types of cyberattacks. Experiments in real networking environment validated that the proposed communication framework is lightweight, secure, portable with low-bandwidth requirement, and flexible to be adopted for dynamic energy management in smart grid

    Using Distributed Ledger Technologies in VANETs to Achieve Trusted Intelligent Transportation Systems

    Get PDF
    With the recent advancements in the networking realm of computers as well as achieving real-time communication between devices over the Internet, IoT (Internet of Things) devices have been on the rise; collecting, sharing, and exchanging data with other connected devices or databases online, enabling all sorts of communications and operations without the need for human intervention, oversight, or control. This has caused more computer-based systems to get integrated into the physical world, inching us closer towards developing smart cities. The automotive industry, alongside other software developers and technology companies have been at the forefront of this advancement towards achieving smart cities. Currently, transportation networks need to be revamped to utilize the massive amounts of data being generated by the public’s vehicle’s on-board devices, as well as other integrated sensors on public transit systems, local roads, and highways. This will create an interconnected ecosystem that can be leveraged to improve traffic efficiency and reliability. Currently, Vehicular Ad-hoc Networks (VANETs) such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) communications, all play a major role in supporting road safety, traffic efficiency, and energy savings. To protect these devices and the networks they form from being targets of cyber-related attacks, this paper presents ideas on how to leverage distributed ledger technologies (DLT) to establish secure communication between vehicles that is decentralized, trustless, and immutable. Incorporating IOTA’s protocols, as well as utilizing Ethereum’s smart contracts functionality and application concepts with VANETs, all interoperating with Hyperledger’s Fabric framework, several novel ideas can be implemented to improve traffic safety and efficiency. Such a modular design also opens up the possibility to further investigate use cases of the blockchain and distributed ledger technologies in creating a decentralized intelligent transportation system (ITS)

    Construction of a real vehicular delay-tolerant network testbed

    Get PDF
    Vehicular Delay-Tolerant Networks (VDTNs) appear as innovative network architecture, able to outline communication challenges caused by issues like variable delays, disruption and intermittent connectivity once that it utilizes the store-carry-and-forward method to allow that in-transit messages (called bundles) can be delivered to the destination by hopping over the mobile vehicles even that an end-to-end path does not exist. Since messages are stored persistently in a buffer and forward to the next hop, a new communication infrastructure is created allowing low-cost asynchronous opportunistic communication under the most critical situations like variable delays and bandwidth constraints. VDTN introduces a layered architecture, acting as an overlay network over the link layer, aggregating incoming IP packets in data bundles (large IP packets), using out-of-band signaling, based on the separation of the control plane and planes. This dissertation presents and evaluates the performance of a real VDTN testbed, demonstrating the real applicability of this new vehicular communication approach. It includes an embedded VDTN testbed created to evaluate safety systems in a real-world scenario. It was used cars with laptops to realize terminal and relay nodes. A real testbed is very important because some complex issues presented in vehicular communication systems can be treated with more realism in real-world environments than in a laboratory environment. The experiments were performed on the internal streets of Brazilian Fiat Automobile manufacturing plant. Performance measurements and analysis were also conduct to verify the efficiency of the system. The results obtained show that safety applications and services can be executed with the actual proposal VDTN architecture in several environments, although notable interference as fading and characteristics of the radio channel, require the use of more modern, appropriate and robust technologies. Thus, the real deployment of VDTNs confirms that VDTNs can be seen as a very promising technology for vehicular communications.Fundação para a Ciência e a Tecnologia (FCT

    Modelling the Integrated QoS for Wireless Sensor Networks with Heterogeneous Data Traffic

    Get PDF
    The future of Internet of Things (IoT) is envisaged to consist of a high amount of wireless resource-constrained devices connected to the Internet. Moreover, a lot of novel real-world services offered by IoT devices are realized by wireless sensor networks (WSNs). Integrating WSN to the Internet has therefore brought forward the requirements of an end-to-end quality of service (QoS) guarantee. In this paper, the QoS requirements for the WSN-Internet integration are investigated by first distinguishing the Internet QoS from the WSN QoS. Next, this study emphasizes on WSN applications that involve traffic with different levels of importance, thus the way realtime traffic and delay-tolerant traffic are handled to guarantee QoS in the network is studied. Additionally, an overview of the integration strategies is given, and the delay-tolerant network (DTN) gateway, being one of the desirable approaches for integrating WSNs to the Internet, is discussed. Next, the implementation of the service model is presented, by considering both traffic prioritization and service differentiation. Based on the simulation results in OPNET Modeler, it is observed that real-time traffic achieve low bound delay while delay-tolerant traffic experience a lower packet dropped, hence indicating that the needs of real-time and delay-tolerant traffic can be better met by treating both packet types differently. Furthermore, a vehicular network is used as an example case to describe the applicability of the framework in a real IoT application environment, followed by a discussion on the future work of this research

    Connectivity and Data Transmission over Wireless Mobile Systems

    Get PDF
    We live in a world where wireless connectivity is pervasive and becomes ubiquitous. Numerous devices with varying capabilities and multiple interfaces are surrounding us. Most home users use Wi-Fi routers, whereas a large portion of human inhabited land is covered by cellular networks. As the number of these devices, and the services they provide, increase, our needs in bandwidth and interoperability are also augmented. Although deploying additional infrastructure and future protocols may alleviate these problems, efficient use of the available resources is important. We are interested in the problem of identifying the properties of a system able to operate using multiple interfaces, take advantage of user locations, identify the users that should be involved in the routing, and setup a mechanism for information dissemination. The challenges we need to overcome arise from network complexity and heterogeneousness, as well as the fact that they have no single owner or manager. In this thesis I focus on two cases, namely that of utilizing "in-situ" WiFi Access Points to enhance the connections of mobile users, and that of establishing "Virtual Access Points" in locations where there is no fixed roadside equipment available. Both environments have attracted interest for numerous related works. In the first case the main effort is to take advantage of the available bandwidth, while in the second to provide delay tolerant connectivity, possibly in the face of disasters. Our main contribution is to utilize a database to store user locations in the system, and to provide ways to use that information to improve system effectiveness. This feature allows our system to remain effective in specific scenarios and tests, where other approaches fail
    corecore