2,522 research outputs found

    Interacting Multiple Model-Feedback Particle Filter for Stochastic Hybrid Systems

    Full text link
    In this paper, a novel feedback control-based particle filter algorithm for the continuous-time stochastic hybrid system estimation problem is presented. This particle filter is referred to as the interacting multiple model-feedback particle filter (IMM-FPF), and is based on the recently developed feedback particle filter. The IMM-FPF is comprised of a series of parallel FPFs, one for each discrete mode, and an exact filter recursion for the mode association probability. The proposed IMM-FPF represents a generalization of the Kalmanfilter based IMM algorithm to the general nonlinear filtering problem. The remarkable conclusion of this paper is that the IMM-FPF algorithm retains the innovation error-based feedback structure even for the nonlinear problem. The interaction/merging process is also handled via a control-based approach. The theoretical results are illustrated with the aid of a numerical example problem for a maneuvering target tracking application

    Localisation of mobile nodes in wireless networks with correlated in time measurement noise.

    Get PDF
    Wireless sensor networks are an inherent part of decision making, object tracking and location awareness systems. This work is focused on simultaneous localisation of mobile nodes based on received signal strength indicators (RSSIs) with correlated in time measurement noises. Two approaches to deal with the correlated measurement noises are proposed in the framework of auxiliary particle filtering: with a noise augmented state vector and the second approach implements noise decorrelation. The performance of the two proposed multi model auxiliary particle filters (MM AUX-PFs) is validated over simulated and real RSSIs and high localisation accuracy is demonstrated

    Study of Multi-Modal and Non-Gaussian Probability Density Functions in Target Tracking with Applications to Dim Target Tracking

    Get PDF
    The majority of deployed target tracking systems use some variant of the Kalman filter for their state estimation algorithm. In order for a Kalman filter to be optimal, the measurement and state equations must be linear and the process and measurement noises must be Gaussian random variables (or vectors). One problem arises when the state or measurement function becomes a multi-modal Gaussian mixture. This typically occurs with the interactive multiple model (IMM) technique and its derivatives and also with probabilistic and joint probabilistic data association (PDA/JPDA) algorithms. Another common problem in target tracking is that the target\u27s signal-to-noise ratio (SNR) at the sensor is often low. This situation is often referred to as the dim target tracking or track-before-detect (TBD) scenario. When this occurs, the probability density function (PDF) of the measurement likelihood function becomes non-Gaussian and often has a Rayleigh or Ricean distribution. In this case, a Kalman filter variant may also perform poorly. The common solution to both of these problems is the particle filter (PF). A key drawback of PF algorithms, however, is that they are computationally expensive. This dissertation, thus, concentrates on developing PF algorithms that provide comparable performance to conventional PFs but at lower particle costs and presents the following four research efforts. 1. A multirate multiple model particle filter (MRMMPF) is presented in Section-3. The MRMMPF tracks a single, high signal-to-noise-ratio, maneuvering target in clutter. It coherently accumulates measurement information over multiple scans via discrete wavelet transforms (DWT) and multirate processing. This provides the MRMMPF with a much stronger data association capability than is possible with a single scan algorithm. In addition, its particle filter nature allows it to better handle multiple modes that arise from multiple target motion models. Consequently, the MRMMPF provides substantially better root-mean-square error (RMSE) tracking performance than either a full-rate or multirate Kalman filter tracker or full-rate multiple model particle filter (MMPF) with a same particle count. 2. A full-rate multiple model particle filter for track-before-detect (MMPF-TBD) and a multirate multiple model particle filter for track-before-detect (MRMMPF-TBD) are presented in Section-4. These algorithms extend the areas mentioned above and track low SNR targets which perform small maneuvers. The MRMMPF-TBD and MMPF-TBD both use a combined probabilistic data association (PDA) and maximum likelihood (ML) approach. The MRMMPF-TBD provides equivalent RMSE performance at substantially lower particle counts than a full-rate MMPF-TBD. In addition, the MRMMPF-TBD tracks very dim constant velocity targets that the MMPF-TBD cannot. 3. An extended spatial domain multiresolutional particle filter (E-SD-MRES-PF) is developed in Section-5. The E-SD-MRES-PF modifies and extends a recently developed spatial domain multiresolutional particle filter prototype. The prototype SD-MRES-PF was only demonstrated for one update cycle. In contrast, E-SD-MRES-PF functions over multiple update cycles and provides comparable RMSE performance at a reduced particle cost under a variety of PDF scenarios. 4. Two variants of a single-target Gaussian mixture model particle filter (GMMPF) are presented in Section-6. The GMMPF models the particle cloud as a Gaussian finite mixture model (FMM). MATLAB simulations show that the GMMPF provides performance comparable to a particle filter but at a lower particle cost

    Fuzzy interacting multiple model H∞ particle filter algorithm based on current statistical model

    Get PDF
    In this paper, fuzzy theory and interacting multiple model are introduced into H∞ filter-based particle filter to propose a new fuzzy interacting multiple model H∞ particle filter based on current statistical model. Each model uses H∞ particle filter algorithm for filtering, in which the current statistical model can describe the maneuver of target accurately and H∞ filter can deal with the nonlinear system effectively. Aiming at the problem of large amount of probability calculation in interacting multiple model by using combination calculation method, our approach calculates each model matching probability through the fuzzy theory, which can not only reduce the calculation amount, but also improve the state estimation accuracy to some extent. The simulation results show that the proposed algorithm can be more accurate and robust to track maneuvering target

    Penalty Dynamic Programming Algorithm for Dim Targets Detection in Sensor Systems

    Get PDF
    In order to detect and track multiple maneuvering dim targets in sensor systems, an improved dynamic programming track-before-detect algorithm (DP-TBD) called penalty DP-TBD (PDP-TBD) is proposed. The performances of tracking techniques are used as a feedback to the detection part. The feedback is constructed by a penalty term in the merit function, and the penalty term is a function of the possible target state estimation, which can be obtained by the tracking methods. With this feedback, the algorithm combines traditional tracking techniques with DP-TBD and it can be applied to simultaneously detect and track maneuvering dim targets. Meanwhile, a reasonable constraint that a sensor measurement can originate from one target or clutter is proposed to minimize track separation. Thus, the algorithm can be used in the multi-target situation with unknown target numbers. The efficiency and advantages of PDP-TBD compared with two existing methods are demonstrated by several simulations
    corecore